35 research outputs found

    Maximal quadratic modules on *-rings

    Full text link
    We generalize the notion of and results on maximal proper quadratic modules from commutative unital rings to \ast-rings and discuss the relation of this generalization to recent developments in noncommutative real algebraic geometry. The simplest example of a maximal proper quadratic module is the cone of all positive semidefinite complex matrices of a fixed dimension. We show that the support of a maximal proper quadratic module is the symmetric part of a prime \ast-ideal, that every maximal proper quadratic module in a Noetherian \ast-ring comes from a maximal proper quadratic module in a simple artinian ring with involution and that maximal proper quadratic modules satisfy an intersection theorem. As an application we obtain the following extension of Schm\" udgen's Strict Positivstellensatz for the Weyl algebra: Let cc be an element of the Weyl algebra W(d)\mathcal{W}(d) which is not negative semidefinite in the Schr\" odinger representation. It is shown that under some conditions there exists an integer kk and elements r1,...,rkW(d)r_1,...,r_k \in \mathcal{W}(d) such that j=1krjcrj\sum_{j=1}^k r_j c r_j^\ast is a finite sum of hermitian squares. This result is not a proper generalization however because we don't have the bound kdk \le d.Comment: 11 page

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    Applications of Hilbert Module Approach to Multivariable Operator Theory

    Full text link
    A commuting nn-tuple (T1,,Tn)(T_1, \ldots, T_n) of bounded linear operators on a Hilbert space \clh associate a Hilbert module H\mathcal{H} over C[z1,,zn]\mathbb{C}[z_1, \ldots, z_n] in the following sense: C[z1,,zn]×HH,(p,h)p(T1,,Tn)h,\mathbb{C}[z_1, \ldots, z_n] \times \mathcal{H} \rightarrow \mathcal{H}, \quad \quad (p, h) \mapsto p(T_1, \ldots, T_n)h,where pC[z1,,zn]p \in \mathbb{C}[z_1, \ldots, z_n] and hHh \in \mathcal{H}. A companion survey provides an introduction to the theory of Hilbert modules and some (Hilbert) module point of view to multivariable operator theory. The purpose of this survey is to emphasize algebraic and geometric aspects of Hilbert module approach to operator theory and to survey several applications of the theory of Hilbert modules in multivariable operator theory. The topics which are studied include: generalized canonical models and Cowen-Douglas class, dilations and factorization of reproducing kernel Hilbert spaces, a class of simple submodules and quotient modules of the Hardy modules over polydisc, commutant lifting theorem, similarity and free Hilbert modules, left invertible multipliers, inner resolutions, essentially normal Hilbert modules, localizations of free resolutions and rigidity phenomenon. This article is a companion paper to "An Introduction to Hilbert Module Approach to Multivariable Operator Theory".Comment: 46 pages. This is a companion paper to arXiv:1308.6103. To appear in Handbook of Operator Theory, Springe

    β-admissibility of observation operators for hypercontractive semigroups

    Get PDF
    We prove a Weiss conjecture on β -admissibility of observation operators for discrete and continuous γ -hypercontractive semigroups of operators, by representing them in terms of shifts on weighted Bergman spaces and using a reproducing kernel thesis for Hankel operators. Particular attention is paid to the case γ=2 , which corresponds to the unweighted Bergman shift

    An Interpolation Problem for Completely Positive Maps on Matrix Algebras: Existence and Solvability

    Get PDF
    Cataloged from PDF version of article.We present certain existence criteria and parameterizations for an interpolation problem for completely positive maps that take given matrices from a finite set into prescribed matrices. Our approach uses density matrices associated to linear functionals on (Formula presented.) -subspaces of matrices, inspired by the Smith-Ward linear functional and Arveson’s Hahn-Banach Type Theorem. A necessary and sufficient condition for the existence of solutions and a parametrization of the set of all solutions of the interpolation problem in terms of a closed and convex set of an affine space are obtained. Other linear affine restrictions, like trace preserving, can be included as well, hence covering applications to quantum channels that yield certain quantum states at prescribed quantum states. We also perform a careful investigation on the intricate relation between the positivity of the density matrix and the positivity of the corresponding linear functional. © 2014, © 2014 Taylor & Francis
    corecore