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We present certain existence criteria and parameterizations for an interpolation
problem for completely positive maps that take given matrices from a finite
set into prescribed matrices. Our approach uses density matrices associated to
linear functionals on *-subspaces of matrices, inspired by the Smith-Ward linear
functional and Arveson’s Hahn-Banach Type Theorem. A necessary and sufficient
condition for the existence of solutions and a parametrization of the set of all
solutions of the interpolation problem in terms of a closed and convex set of an
affine space are obtained. Other linear affine restrictions, like trace preserving, can
be included as well, hence covering applications to quantum channels that yield
certain quantum states at prescribed quantum states. We also perform a careful
investigation on the intricate relation between the positivity of the density matrix
and the positivity of the corresponding linear functional.
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1. Introduction

Letting M,, denote the unital C*-algebra of all n x n complex matrices, recall that a matrix
A € M, is positive semidefinite if all its principal determinants are nonnegative. A linear map
@: M, — My is completely positive if, for allm € N, the linearmap I, ® ¢ : M,, @ M,, —
M,, ® My is positive, in the sense that it maps any positive semidefinite element from
M,, ® M, into a positive semidefinite element in M,, ® M. By CP(M,,, M) we denote the
cone of all completely positive maps ¢: M, — M. An equivalent notion, cf. Stinespring
[1], is that of positive semidefinite map ¢, that is, for all m € N, all hy, ..., h,, € C", and
all Ay, ..., A, € M,, we have

m

> (@(ATADR . hi) > 0. (1.1)
ij=1
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In this article, we consider the following

Interpolation Problem Given matrices A, € M, and B, € My forv = 1,..., N,
determine ¢ € CP(M,,, My) subject to the conditions

¢(Ay)) =By, forallv=1,..., N. (1.2)

The meaning of ‘determine’ is rather vague so we have to make it clear: firstly, one
should find necessary and/or sufficient conditions for the existence of such a solution
¢, secondly, one should find an explicit parametrization of all solutions and, lastly, but
not the least, one should find techniques (numerical, computational, etc.) to determine
(approximate) solutions. Other conditions like trace preserving may be required as well,
with direct applications to quantum information theory. In this general formulation, the
interpolation problem has been considered by Li and Poon in [2], where solutions have
been obtained in case when the given input and output data are Hermitian matrices that
mutually commute, respectively. The purpose of this article is to approach, from a general
perspective, existence criteria and parametrization of solutions of the interpolation problem.
The solvability of the interpolation problem is characterized in Theorem 3.3 from which an
explicit parametrization of the set of all solutions in terms of a closed and convex set of an
affine space follows.

A more concrete motivation for considering the interpolation problem is provided by
the concept of ‘quantum operation’, cf. Kraus [3] and [4], in the more modern terminology,
a quantum channel, that is, a completely positive linear map that is trace preserving. A
natural question related to these mathematical objects refers to finding a quantum channel
that can take certain given quantum states from a finite list into some other prescribed
quantum states, which is a special case of interpolation problem. In this respect, Alberti
and Uhlmann [5] find a necessary and sufficient condition for a pair of qubits (quantum
states in M») to be mapped under the action of a quantum channel onto another given pair
of qubits. For larger sets of pure states, the problem has been considered from many other
perspectives, see Chefles et al. [6] and the bibliography cited there. More general criteria
for existence of solutions have been considered by Huang et al. in [7], while Heinosaari
et al. obtain in [8] other criteria of existence of solutions as well as techniques to approximate
solutions in terms of semidefinite programming, in the sense of Nesterov and Nemirovsky
[9] and Vanderberghe and Boyd [10].

Another motivation for considering the interpolation problem comes from quantum
tomography, e.g. see Chuang and Nielsen [11], which requires the explicit calculation of
the quantum channel at each matrix unit. On the other hand, it is more realistic to assume
that incomplete data may be available only and that the input data may not be related to
matrix units at all, e.g. see D’ Ariano and Lo Presti [12] and Gongalves et al. [13].

In order to briefly describe our approach and results, let us denote A = (A, ..., An)
and call it the input data and, similarly, B = (B, ..., By) and call it the output data, as
well as

Cap :={p € CP(M,, My) | ¢(A)) = B, forallv=1,..., N} (1.3)

Clearly, the set C4 p is convex and closed, but it may or may not be compact. Since the maps
¢ € CP(M,,, My) are, by definition, linear, without loss of generality one can assume that the
set {Ay, ..., An}is linearly independent, otherwise some linear dependence conditions on
the output data B are necessary. On the other hand, since any ¢ € CP(M,,, M) is Hermitian,
in the sense that (A*) = @(A)* for all A € M, it follows that, without loss of generality,
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one can assume that all matrices Ay, ..., Ay, By, ..., By are Hermitian. In particular,
letting Sa denote the linear span of Ay, ..., Ay, it follows that Sy is a x-subspace of M,,,
that is, it is a linear subspace stable under taking adjoints, and then, letting pa p: SAa — Mj
be the linear map uniquely determined by the conditions

paB(Ay)=B,, v=1,...,N,

it follows that any ¢ € CP(M,,, M) satisfying the constraints (1.2) should necessarily be an
extension of g p. Inspired by Smith and Ward [14], to ¢ B we associate a linear functional
SA.B, see (3.4), and call it the Smith-Ward linear functional, and then we go further and we
associate a ‘density matrix” Do p € My ®SaA by sa p(C) = tr(DZ’BC) forall C € M;®SA.
In Theorem 3.3, we show that the solvability of the interpolation problem is equivalent to
the fact that the affine subspace Dy B + My ® Si contains positive semidefinite matrices.
Consequently, a parametrization of the set of all solutions of the interpolation problem by
the closed convex subset Pp g := {P € (M; ® Sji-)h | P > — Dy p}is obtained through an
affine isomorphism. In Section 3.2 we show that, if the input data A are orthonormalized with
respect to the Hilbert-Schmidt inner product, then the density matrix is easily calculable
as DAp = Zf,v:l B! ® A, and this considerably simplifies the criterion of solvability
of the interpolation problem, see Theorem 3.12. Also, we observe that the Gram-Schmidt
orthonormalization does not affect the other assumptions.

If the x-subspace S contains the identity matrix 7, (e.g. if we are interested in solutions
@ that are unital, that is, ¢ (1,,) = Ii), making it an operator system,[15] then Sy is linearly
generated by the cone of its positive semidefinite matrices S;. In this case, there is the
celebrated Arveson’s Hahn-Banach Type Theorem [16] and Smith-Ward’s proof,[14] see
Theorem 2.6, that can be used, see Theorem 3.6, in order to show that the solvability of
the Interpolation Problem is equivalent with two other assertions: firstly, with the complete
positivity of g B and, secondly, with the positivity of sa .

In order to compare our results with the above-mentioned articles, let us note that
our solution as in Theorem 3.3 shows that the interpolation problem is a semidefinite
programming problem, a fact already observed in [8] and [13], but our characterization in
terms of DA g+ My ® S i‘ puts the interpolation problem in the dual form of a semidefinite
programming problem, cf. [9,10], which makes it different from all previous works.

It is a simple observation, see Remarks 3.5, that the positive semidefiniteness of the
density matrix Dy p is sufficient for the existence of solutions to the interpolation problem
but, in general, this is not a necessary condition. We perform a careful investigation on
this issue in Section 2.4 and we provide examples and counter-examples illustrating the
complexity of this phenomenon. In addition, in Theorem 4.3, we show that in case a *-
subspace S is generated by matrix units and also generated by ST, then the density matrix
of any positive linear functional on S is positive semidefinite if and only if S is an algebra.
Therefore, in this special case, it is necessary to impose the additional assumption that the
x-subspace Sy is an algebra, in order for the solvability of the interpolation problem to be
equivalent to the positive definiteness of D . However, exotic cases of x-subspaces that
are not algebras but when this equivalence happens may occur as well, see Examples 2.9.

Another observation on the density matrix Da p is that, one might think that it is the
Choi matrix [17] that plays the major role in getting criteria of existence of solutions of
the interpolation problem, but this seems not to be the case: firstly, in order to define the
Choi matrix, see Section 2.1, we have to use all the matrix units, but the subspace Sa
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might not contain any of them and, secondly, the Choi matrix does not relate well with the
‘action’ of the linear map that it represents, while the density matrix does. Actually, once
we explicitly show the relation between the density matrix and the Choi matrix of a given
map ¢ € CP(M,,, My), see Proposition 4.1, we can define a ‘partial Choi matrix’, see (4.5),
for linear maps on subspaces.

In Section 3.3 we consider the interpolation problem for a single interpolation pair, that
is, N = 1, consisting of Hermitian matrices. By using techniques from indefinite inner
product spaces, e.g. see [ 18], we derive criteria of existence of solutions of the interpolation
problem with only one operation element, get a necessary and sufficient condition of
solvability in terms of the definiteness characteristics of the data, and estimate the minimal
number of the operation elements of the solutions.

We thank Eduard Emelyanov for providing useful information on ordered vector spaces
and especially for providing the bibliographical data on Kantorovich’s Theorem. We also
thank David Reeb for drawing our attention on [8], soon after a first version of this
manuscript has been circulated as a preprint, which also provided to us more information
on literature on more or less special cases of the interpolation problem that we were not
aware of. Last but not least, we thank the editor for suggesting changes that considerably
improved the presentation of this article.

2. Notation and preliminary results
2.1. The Choi matrix and the Kraus form

Following [19], n € N let {elgn)};'zl be the canonical basis of C". The space M, x of n x k
matrices is identified with B((Ck, C™), the vector sEace of all linear transformations C* —
C".Forn, k € N we consider the matrix units {El("’ ) [l=1,....n,i=1,....,k} C My
of size n x k, thatis, E l(f;‘k) is the n x k matrix with all entries 0 except the (/, i)-th entry
which is 1. In case n = k, we denote simply El('f) = EI(Z’") . Recall that M,, is organized
as a C*-algebra in a natural way and hence, positive elements, that is, positive semidefinite
matrices in M,,, are well defined.
Given a linear map ¢: M, — M define an kn x kn matrix ®, by

m\1"
q)w - I}O (El’m)]l m=1 ’ (21)

This transformation appears more or less explicitly at de Pillis [20], Jamiotkowski [21],
Hill [22], and Choi [17]. In the following, we describe more explicitly the transformation
¢ — ®,. We use the lexicographic reindexing of{El(”;’k) [l=1,...,n,i=1,...,k},
more precisely

i
s

(n,k) (n,k) (n,k) (n,k) (n,k) (n,k)
(7 BV B B B BT ) = (61L& En)
(2.2)
An even more explicit form of this reindexing is the following

& =E" wheter = (1 — Dk +i, foralll=1,....n, i=1,....k. (23

The formula
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k k P
PU—1)k+i,(m—1)k+j =<(p (El(n”)l> eﬁ.),e; )>, L] = 1,...,k, l,m = 1,...,1’1, (2.4)

and its inverse
nk

9(C) = Y 9 EfCE. CeM,, (2.5)

r,s=1

establish a linear and bijective correspondence
B(My, Mi) 5 ¢ = @y = [0 115_| € My (2.6)
The formulae (2.4) and its inverse (2.5) establish an affine and order preserving isomorphism
CP(My, Mi) 3 ¢ > @, € M}, 2.7)

Given ¢ € B(M,, My) the matrix ®, as in (2.1) is called the Choi matrix of ¢.
Let ¢ : M,, — Mj be a completely positive map. Then, cf. Kraus [3] and Choi [17],

there are n x k matrices Vi, Va, ..., V,, with m < nk such that
©(A) = VAV + VAV, + -+ VAV, forall A € M,. (2.8)
The representation (2.8) is called the Kraus representation of ¢ and the matrices Vi, ..., Vj,

are called the operation elements. Note that the representation (2.8) of a given completely
positive map ¢ is highly nonunique, not only with respect to its operation elements but
also with respect to m, the number of these elements. The minimal number of the operation
elements in the Kraus form representation of a completely positive map ¢ € CP(M,,, My)
with Choi matrix ® is rank(®).

2.2. =-Subspaces

For a fixed natural number m, S € M,, is called a x-subspace if it is a linear subspace of
M,, that is stable under taking adjoints, that is, A* € S for any A € S. Note that, both the
real part and imaginary part of matrices in S are in S and hence S is linearly generated by
the real subspace S™ of all its Hermitian matrices. Also, St = {A € S | A > 0} is a cone
in S" but, in general, S* may fail to linearly generate S". Recall [15] that a *-subspace S
in M,, is called an operator system if the identity matrix /,, € S. Any operator system S is
linearly generated by ST, e.g. observing that any Hermitian matrix B € S can be written

1 1
B =S1Blln + B) = S(IBlIm — B),

hence a difference of two positive semidefinite matrices in S. The next proposition provides
different characterizations of those *-subspaces S of matrices that are linearly generated by
ST, as well as a model that points out the distinguished role of operator systems. We need
first to recall a technical lemma.

Lemma 2.1 Given two matrices A, B € Mm+, we have B < a A, for some o > 0, if and
only if Ran(B) C Ran(A).

Proof A folklore result in operator theory, e.g. see [23], says that for two matrices A, B €
M,,, the inequality BB* < o AA™, for some « > 0, is equivalent with Ran(B) C Ran(A).
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Consequently,if A, B € M,j then B < Aifand onlyifRan(B]/z) C Ran(Al/z). From here
the statement follows since we have Ran(P) = Ran(P!/?) for any positive semidefinite
matrix P. O

ProrosiTioN 2.2 Let S be a x-space in My,. The following assertions are equivalent:

(i) S is linearly generated by S™.
(ii) There exists A € ST such that for any B € S" we have B < a A for some a > 0.
(iii) Forany B € S there exists A € ST with B < A.
(iv) There exists T € M,, a matrix of rank r, with Ran(T) = C" & 0 C C™, and an
operator system T < M, such that

S=T"(T ®0,,_)T, 2.9)
where 0y, _, denotes the (im — r) x (m — r) null matrix.

Proof

(i)=>(ii). Assuming that S is linearly generated by ST, let A be amatrix in ST of maximal
rank. We first show that, for any B € ST we have B < a A for some @ > 0. To this end,
assume that this is not true hence, by Lemma 2.1, Ran(B) < Ran(A) hence, Ran(A) is a
proper subspace of Ran(A) +Ran(B). Since A, B < A+ B, again by Lemma 2.1 it follows
Ran(B) + Ran(A) € Ran(A + B). But then, A + B € ST has bigger rank than A, which
contradicts the choice of A.

Letnow B € S" be arbitrary. By assumption, B = By — B, with B; € Stforj=1,2
hence, by what has been proven before, there exist « > 0 such that By < oA, hence
B < B] < aA.

(i)=>(iii). This implication is obvious.

(iii)=>(i). Since S is a *-subspace, in order to prove that S is linearly generated by ST,
it is sufficient to prove that S" is (real) linearly generated by S+. To see this, let B € S" be
arbitrary. By assumption, there exist A; € ST,j=1,2,suchthat B < A; and —B < A,
hence, letting A = A| + A, € ST, we have

1 1

where A — B, A+ B e ST.

(ii)=(iv). Let A € ST be a matrix having the property that for any B € S" there
exists @ > 0 such that B < aA. By Lemma 2.1, it follows that for any B € ST we have
Ran(B) C Ran(A) hence, since S is linearly generated by ST, it follows that forany B € S
we have Ran(B) C Ran(A), in particular, Ran(A) reduces B and

B = [%0 8} . w.r.t.C™ = Ran(A) @ ker(A).

Letting r denote the rank of A, observe now that Ay is positive semidefinite and invertible
as a linear transformation in Ran(A), hence

To= (A, *BoAy"* | B € S)
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is an operator system in 3(Ran(A)). Then consider a unitary transformation V in M,, such
that it maps Ran(A) to C" and ker(A) to C"~", letting

T =VToV*and T = VA'/?

the conclusion follows.
(iv)=-(1). This implication is clear. O

CoroLLARY 2.3 Ifthe x-subspace S of My, contains a positive definite matrix, then S is
linearly generated by S™.

Proof Indeed, if P € S is positive definite, then 7 = P~!/2S P~1/2 is an operator system
and then S = P!/2T P'/? is linearly generated by S+. O

In the following, we will use a particular case of the celebrated theorem of Kantorovich
[24], see also Theorem 1.30 in [25], of Hahn-Banach type.

LemMa 2.4 Let S be a *-subspace of M, that is linearly generated by ST, and let
f: S — C be a positive linear map, in the sense that it maps any element A € S* to a
nonnegative number f(A). Then, there exists a positive linear functional f: M,, — C that
extends f.

Proof Briefly, the idea is to consider the R-linear functional f;, = f|S™" and note that f;,
is positive. By Proposition 2.2, there exists A € S* such that for all B € S" there exists
a > 0 with B < aA. By Lemma 2.1, we have Ran(B) < Ran(A) for all B € Sh. Let
p: B(Ran(A))" — R be defined by

p(C) =inf{f,(B) | C < BeS"}, C eBRan(A)". (2.10)

Then p is a sublinear functional on the R-linear space B (Ran(A))M and f(B) = p(B) forall
B € S". By the Hahn-Banach Theorem, there exists a linear functional g: B(Ran(A))" —
R that extends f;, and such that g(B) < p(B) for all B € B(Ran(A))". Then, for any B €
M+ smce —B < 0itfollows —g(B) = g(—B) < p(—B) < f1(0) =0, hence g(B) > 0.
Then, let f be the canonical extension of g to B(Ran(A)) = B(Ran(A))h + 1lS'(Ran(A))h
in the usual way, and finally extend f to M, by letting f (B) = f (Pranca)B| Ran(A)) for
all B € M,,, where Pran(a) denotes the orthogonal projection of C" onto Ran(A). O

We will also need the following

LEmMA 2.5 LetS be a x-subspace in M, and let S+ be the orthogonal complement space
associated to S with respect to the Hilbert-Schmidt inner product

L={(EeM,|tu(C*E)=0, forallC € S). (2.11)

Then:

(a) St isax-subspace of M, hence linearly generated by its Hermitian matrices.

b) (M ® S)* = My ® S*, in particular, (My @ S)* is a %-subspace of My @ M,,.

(c) IfS is an operator system then any matrix C € S* has zero trace, in particular
StnMm =0}
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(d) If S is an operator system then any matrix in (My @ S)* has zero trace, hence
(M ® S)* does not contain nontrivial positive semidefinite matrices.

Proof

(a) Clearly, S* is a subspace of M,,. Let E € S, hence tr(E*C) = O forall C € S.
Then, 0 = tr(E*C) = tr(C*E) = tr(EC*) = tr((E*)*C*) for all C € S and,
since S is stable under taking adjoints, this implies that E* € S*.

(b) A moment of thought shows that M; ® St C (M; ® S)*. On the other hand,
dim((My ® S)*) = k2n? — k*dim(S) = k2(n? — dim(S)) = dim(M; ® S1),
hence the desired conclusion follows.

(¢) This is a consequence of the fact that I, € S and the fact that the trace is faithful.

(d) This is a consequence of the statements (b) and (c). (|

2.3. The Smith-Ward functional

In the following, we first recall a technical concept introduced by Smith and Ward, cf. the
proof of Theorem 2.1 in [14], and there used to provide another proof to the Arveson’s
Hahn-Banach Theorem [16] for completely positive maps, see also Chapter 6 in [15].
Consider S a subspace of M,. Note that, for any k € N, My (S), the collection of all
k x k block-matrices with entries in S, canonically identified with M ® S, is embedded
into the C*-algebra My(M,) = My ® M, and hence it inherits a natural order relation, in
particular, positivity of its elements is well defined. If S is a x-subspace then M (S) is a *-
subspace as well and if, in addition, the x-subspace S is linearly generated by the cone of its
positive semidefinite matrices, the same is true for My (S), e.g. by Proposition 2.2. A linear
map ¢: S — My, is called positive if it maps any positive semidefinite matrix from S to a
positive semidefinite matrix in My. Moreover, form € N, letting ¢, = I,, ®¢: M, ®S —
M,, ® My, by means of the canonical identification of M,, ® S with M,,,(S), the C*-algebra
of all m x m block-matrices with entries elements from S, it follows that

on ([ai 1 5o) = Lo @) 2y ]!y € Mu(S),

Then, ¢ is called m-positive if ¢, is a positive map, and it is called completely positive if it
is m-positive for all m € N. However, positive semidefiniteness in the sense of (1.1) cannot
be defined, at this level of generality.

To any linear map ¢ : S — My, where S € M,, is some linear subspace, one associates
a linear functional s, : My (S) — C, via the canonical identification of M;(S) >~ M; ® S,
by

k
so ([4] o) = D (o (Ai,j)ej.’”,elf"))(:k (2.12)

i,j=1

< L ®ge ([Ai,j]f{j:l)) o, e(k)>(ck2

k
— <[¢(Ai’j)]i,j=] o) e(k)>

Ck?
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5'{,,':1 € Mi(S), thatis, it is a k x k block-matrix, in which each block A; ; is

an n x n matrix from S, and e®) is defined by

where [A; ;]

M=ePg. . glect =Co. . ac 2.13)
The formula (2.12) establishes a linear isomorphism
B(S, M) 3¢9 s5p€ (M ®@S)  ~BM;®S,C), (2.14)
with the inverse transformation
M ®@S)" ~BM®S,C)>s > ¢ € B(S, My) (2.15)

given by the formula
k

p=[s(Eea)] . aes (2.16)

i,j=1

The importance of the Smith-Ward functional relies on the facts gathered in the following
theorem: the equivalence of (a) and (d) is a particular case of the Arveson’s Hahn-Banach
Theorem,[16] while the equivalence of (a), (b) and (c) is essentially due to Smith and Ward
[14] as a different proof of Arveson’s result.

THEOREM 2.6 Let S be a x-subspace of M, that is linearly generated by ST and let
¢: S8 = My, be a linear map. The following assertions are equivalent:

(a) @ is completely positive.

(b) ¢ is k-positive.

(c) sy is a positive functional.

(d) There exists ¢ € CP(My, M,) that extends ¢.

Proof Clearly (a) implies (b), the fact that (b) implies (c) follows from the definition
of s, as in (2.12), while (d) implies (a) is clear as well. The only nontrivial part is (c)
implies (d). Briefly, following the proofs of Theorems 6.1 and 6.2 in [15], the idea is to use
Kantorovich’s Theorem as in Lemma 2.4 in order to extend s, to a positive functional 5 on
M @ M,, >~ My(M,) ~ My, then, in view of (2.16), let ¢ : My — M,, be defined by

k

s =[5(ENea)] . acm, 2.17)

i,j=1

and note that ¢ extends ¢. Finally, in order to prove that ¢ is completely positive itis sufficient
to prove that it is positive semidefinite, see (1.1). To see this, letm € N, Ay, ..., A, € My,
and hy, ..., h, € CF be arbitrary. Then, letting

k
k .
hj:Z)\i,lel(), j=1,...,m,
=1
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we have
m m k
~ 3 ~ k) (k
S (@A i) = 3 3 dykip (BATADE o)
ij=1 ij=11,p=1
m k
T~ k
=3 Y ks (4 @ EY))
ij=11,p=1
then, for each i=1,...,m, letting B; denote the k x k matrix whose first row is A; 1, ..., A k
and all the others are 0, hence Bl.* B; = Zf p=1 A jﬁ,, pEI()k}, we have
m
= Y S(A7A; ® B! B))
ij=1
m * m
=7 (ZA, ®B,-> Y AjeBi|]=0
i=1 j=1

O

Actually, from the proof of Theorem 2.6, it is easy to observe that (2.12) and (2.16)
establish an affine and order preserving bijection between the cone CP(S, My) and the
cone {s: My(S) — C | s linear and positive}.

2.4. The density matrix

We consider M, as a Hilbert space with the Hilbert-Schmidt inner product, that is,
(C, D)ys = tr(D*C), for all C, D € M,,. To any linear functional s: M,, — C, by
the representation theorem for (bounded) linear functionals on a Hilbert space, in our case
M,, with the Hilbert-Schmidt inner product, one associates uniquely a matrix Dy € M,,,
such that

s(C) = t(DFC), C e M,,. (2.18)

Clearly, s — Dy is a conjugate linear bijection between the dual space of M, and M,,.

Remark 2.7 Using the properties of the trace, it follows that s is a positive functional if
and only if the matrix Dy is positive semidefinite. Indeed, if Dy is positive semidefinite,
then for all positive semidefinite matrix in M,,, we have tr(D;C) = tr(C'/2D,C/%) > 0.
Conversely, if tr(Ds;C) > 0 for all positive semidefinite m x m matrix C, then for any
vector v of length m we have 0 < tr(Dsvv*) = tr(v* Dyv) = v*Dgv, hence Dy is positive
semidefinite.

From the previous remark, if s is a state on M,,, that is, a unital positive linear functional
on M,,, then D; becomes a density matrix, that is, a positive semidefinite matrix of trace
one. Slightly abusing this fact, we call Dy the density matrix associated to s, in general.

We now come back to the general case of a x-subspace S in M,,. By analogy with the
particular case of the operator system of full matrix algebra M,, described before, with
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respect to the Hilbert-Schmitd inner product on M,,, hence on its subspace S, to any linear
functional s: S — C one uniquely associates an m x m matrix Dy € S € M,, such that

s(C) = tr(DFC), C €S, (2.19)

and we continue to call Dy the density matrix associated to s. Clearly, this establishes a
conjugate linear isomorphism between the dual space of S and S. In view of Theorem 2.6,
we may ask whether the positivity of the linear functional s is equivalent with the positive
semidefiniteness of its density matrix, as in the case of the full matrix algebra M,,. Also, if
the density matrix Dy is positive semidefinite then s is a positive linear functional but, as
the following remarks and examples show, the converse may or may not hold.

Remarks 2.8

(1) If S is a x-subspace of M), and the linear functional s: S — C is Hermitian, that is,
s(C*) = s(C) forall C € S, then its density matrix D is Hermitian. Indeed, for any C € S
we have

s(C) = s(C*) = tr(D*C*) = tr(CD) = tr((D*)*C),
hence, D* is also a density matrix for s. Since the density matrix is unique, it follows that
D = D*.
(2) If Sis a C*-subalgebra of M,,, not necessarily unital, then for any positive functional
s: & — C,its density matrix D is positive semidefinte. Indeed, in this case D = Dy — D_
with Dy € ST and Dy D_ =0hence 0 < s(D_) =tr(DD_) = — tr(DZ) hence D_ =0
and consequently D € S™.

Examples 2.9

(1) We consider the following operator system S in M3
0| |a,b,c,deCy, (2.20)

and note that ST consists on those matrices C as in (2.20) with ¢ = b, a,d > 0, and
|b|? < ad. Let

1 0 2
p=|0 1 0],
V2 0 1

and note that D € & is Hermitian but it is not positive semidefinite: more precisely, its
eigenvalues are 1 — fz 1, an_d 1 + +/2. On the other hand, for any C € S, that is, with
the notation as in (2.20), ¢ = b, a,d > 0, and |b|2 < ad, we have
r(DC) =a+~2b+a+2b+d=2a+d+2v2Reb
>2a+d —2V2|b| > 2a +d — 2v/2Vad = (N2a — Vd)* > 0,

hence the linear functional S > C +— tr(DC) € C is positive.
(2) In M, we consider the Pauli matrices

10 0 —i 01 1 0
00=[0 1], 01=[i O}’ 02=[1 0] 63=[0 _1], (221
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that makes an orthogonal basis of M> with respect to the Hilbert-Schmidt inner product.
We consider S the linear span of o¢, o1 and o>, more precisely,

o

S:{c:[;‘ ﬂ:||oz,,6,ye(C}. (2.22)

Note that S is an operator system but not an algebra. However, we show that, an arbitrary
matrix D € S is positive semidefinite if and only if tr(D*C) > 0 forall C € S*.

To this end, note that a matrix C as in (2.22) is positive semidefinite if and only if y = B,
a >0,and |B]> <’ Let D € S, that is,

D:|:a bi|’
c a

such that tr(D*C) > 0 for all C € ST. From Remark 2.8 it follows that D is Hermitian,

hence a is real and ¢ = b, and the condition tr(D*C) > 0 can be equivalently written as
aa + Re(Bb) > 0 whenever o > 0 and |B]> < o?. (2.23)

Letting 8 = 0 implies that @ > 0. We prove that |b|?> > a*. If @ = 0 then from (2.23), it
follows that > = 0. If ¢ > 0 and |b|? > & then letting @ = a and B = —alb|/b, we obtain
0 < aa + Re(Bb) = a* — alb| = a(a — |b|) < 0, a contradiction. Hence |b|?> > a? must
hold, and we have proven that D is positive semidefinite.

3. Main results
3.1. The general case

LetAy,...,Ay € Myand By, ..., By € My be the given interpolation data with respect to
the interpolation problem, see the Introduction. We recall the notation A = (Ay, ..., An),
called the input data and, similarly, B = (By, ..., By), called the output data. We are
looking for ¢ € CP(M,,, My) such that the interpolation condition holds

¢o(Ay) =By, forallv=1,...,N. (3.1

Since any completely positive map is Hermitian, without loss of generality we can assume
that all A, and all B, are Hermitian, otherwise we may increase the number of the data
by splitting each entry into its real and its imaginary parts, respectively. Also, without
loss of generality, we can assume that Ay, ..., Ay are linearly independent, otherwise
some linearly dependence consistency conditions on By, ..., By should be imposed. On
the other hand, since the required maps ¢ should be linear, the constraint (3.1) actually
determines ¢ on the linear space generated by Ay, ..., Ay

Sa =Lin{Ay, ..., Ay}, 3.2)

which is a x-subspace due to the fact that all A, are Hermitian matrices. In conclusion,
without loss of generality, we work under the following hypotheses on the data:

(al) All matrices Ay, ..., Ay € M, and By, ..., By € My are Hermitian.
(a2) The set of matrices {Ay, ..., AN} is linearly independent.
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From now on, Sy is a x-subspace of M, for which Ay, ..., Ay is a linear basis. Having
in mind the approach of the interpolation problem through the Arveson’s Hahn-Banach
Theorem and Smith-Ward linear functional, Sy might be required to be linearly generated
by S:. We will also consider special cases when, in addition to the hypotheses (al) and
(a2), the following condition might be imposed on the data:

(a3) Sa is linearly generated by SX.

Remark 3.1 Recalling the definition of Ca g as in (1.3), the set of solutions of the in-
terpolation problem, observe that Ca g is convex and closed. If So contains a positive
definite matrix of rank 7, in particular, if Sa is an operator system, then Ca g is bounded
as well, hence compact. Indeed, if Sa is an operator system, this follows from the fact,
e.g. see Proposition 3.6 in [15], that ||¢|| = |l¢(I,)]| and, since I, € Sa, the positive
semidefinite matrix ¢(/,) is fixed and independent of ¢ € Ca . The general case follows
now by Proposition 2.2. However, the same Proposition 2.2 shows that assuming that Sy
is generated by SZ is not sufficient for the compactness of Ca B.

In order to approach the interpolation problem, it is natural to associate a linear map
YAB: SA — My to the data A and B by letting

oaB(Ay) =B,, v=1I1,...,N, 3.3)
and then uniquely extending it by linearity to the whole x-subspace Sa. Then, having in

mind the Smith-Ward linear functional (2.12), let

1

SAB (E}”‘]? ®AU) - <Bve(_k),e§k)>(c]( =bijy ij=1l...kv=1...N, (34
where
k
k
By= Y b El). v=1_..N. (3.5)
i,j=1

Since {E}?@AV li,j=1,...k, v=1,..., N}isabasisfor M; ®Sa, it follows that s g
admits a unique extension to a linear functional sao g on My (Sa). Note that, with respect
to the transformations (2.12) and (2.15), the functional sa g corresponds to the map ¢ B,
and vice-versa.

To the linear functional s g one also uniquely associates its density matrix Da g as in
(2.19), more precisely,

saB(C) = r(Df O).  C € My ® S, (3.6)

that can be explicitly calculated in terms of input—output data A and B, as follows.

ProrosiTiON 3.2 Letthe data Ay, ..., Ay and By, ..., By satisfy the assumptions (al)
and (a2). Then, the density matrix DA B of the linear functional sa B is

N k
Dap=Yy. Y dij,E)® A, 3.7)

v=1i,j=I1
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where, for each pairi, j = 1,..., k, thenumbersd, j 1, ..., d; j N are the unique solutions
of the linear system

N
Zdi,j,utr(AuAu) =bijv. v=1,....N, (3.8)
n=1

and the numbers b; ; , are defined at (3.5).

Proof Clearly, the den51ty matrix DA g canbe represented in terms of the basis { E (kj) RA, |

i,j=1, Jk, v=1, N} as in (3.7), so we only have to show that (3.8) holds. To
this end, note that
k N
CYED DI LN
i,j=1v=

recalling that A, are Hermitian matrices, by assumption. Then, in view of (3.4), for each
i,j=1,...,kandeachv =1,..., N, we have

k k
bi jv = SAB (Ei(,.j) ® A,)) =tr (D;B (El.(’j) ® Av))
kK N
=tr Z Zzi’, (E(lo E(k) ® A, A )
i/,j/=1 le

then, taking into account that E (k) E; (k-) =6y E (k) , we have

N k
- k
=S Y au (Ej)]) tr(A,Ay)
n=l1j'=1
and, since tr(E(k) ) =3 ;, we have

dijutr(A Ay).

Il
iM-

Finally, observe that the matrix [tr(A MAU)]QI ,—; is the Gramian matrix of the linearly

independent system Ay, ..., Ay with respect to the Hilbert-Schmidt inner product, hence
positive definite and, in particular, nonsingular. Therefore, the system (3.8) has unique
solution. O

THEOREM 3.3 Let the data Ay, ..., Ay € M, and By, ..., By € My be given and
subject to the assumptions (al) and (a2), let pa B be the linear map defined at (3.3), let sa B
be the linear functional defined at (3.4) and the density matrix Da B associated to sa g as
in (2.19). Also, let S[i‘ be the orthogonal complement space associated to Sa with respect
to the Hilbert-Schmidt inner product, see (2.11).

The following assertions are equivalent:

(i) There exists ¢ € CP(M,, My) such that ¢(A,) = B, forallv=1,..., N.
(ii) The affine space DA B+ M ®S i‘ contains at least one positive semidefinite matrix.
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Proof

(1)=(i). Let ¢ € CP(M,, My) be such that ¢(A,) = B, forallv =1,..., N, hence ¢
extends the linear map ¢a B, and let s, : My (M,) — C be the Smith-Ward linear functional
associated to ¢ as in (2.12). Since ¢ is completely positive, it follows that s, is positive.
Further, let D, € M, be the density matrix of sy, cf. (2.18), hence, by Remark 2.7, D,, is
positive semidefinite. On the other hand, since ¢ extends @u B, it follows that s, extends
sA,B, hence Dy, = Dp g + P for some P € (M ® SOt=M® Si.

(ii)=>(i). Let D = D B + P be positive semidefinite, for some P € (M ® Sa)t =
M ® Sji-. Then

tr(D*C) = tr ((Df g + P*) C) = tr (D} gC) = saB(C), C € Sa,

hence, letting s: My, — C be the linear functional associated to the density matrix D, it
follows that s is positive and extends sa . Further, let ¢s: M, — M be the linear map
associated to s as in (2.16). Then ¢ is completely positive and extends @ B. [l

CoroLLARY 3.4  Under the assumptions and the notation of Theorem 3.3, suppose that
one (hence both) of the equivalent conditions (i) and (ii) holds. Then, the formula

o(A) = [tr ((DA,B + P) (El(kj) ® A))]

establishes an affine isomorphism between the closed convex sets

k
, AeM,, (3.9)
ij=1

CaB :={p € CP(M,,, My) | 9(Ay) = By, forallv=1,..., N}, (3.10)

and N
Pap = {P = (Mk ®S§) P> —DA,B} . G.11)

Proof It is clear that both sets Ca g and P4 p are closed and convex.

The fact that the formula (3.9) establishes an affine isomorphism between these two
convex sets follows, on one hand, from the affine isomorphism properties of the Smith-
Ward functional and of the density matrix and, on the other hand, from the proof of
Theorem 3.3. O

Remarks 3.5 Let the assumptions and the notation of Theorem 3.3 hold.

(1) In order for the set Ca  to be nonempty, a necessary condition is, clearly, that for
anyv =1,..., N, if A, is semidefinite, then B, is semidefinite of the same type,
that is, either positive semidefinite or negative semidefinite.

(2) Ifthedensity matrix D4 p is positive semidefinite, as a consequence of Corollary 3.4
the set Ca p is nonempty, more precisely, the map ¢: M,, — M, defined by

n
P(A) = [tr (DA,B (Ef? ® A))]_ . AeM, (3.12)
i,j=

is completely positive and ¢(A,) = B, forallv = 1, ..., N. We stress the fact
that this sufficient condition is, in general, not necessary, see Examples 2.9.

(3) According to Corollary 3.2 in [2], for any A € M, and B € M,:' there exists
¢ € CP(M,, My) such that ¢(A) = B. This can be obtained, in our setting, by
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observing that, in this case, D4 p = B ® A is positive semidefinite and then apply
the previous statement.

The following theorem considers the special case when the x-space Sy is generated by
its positive cone SX. This assumption, for example, becomes natural if we are looking for
solutions ¢ of the interpolation problem that are unital, that is, ¢ (1,,) = I, or if we assume
that the data A and B consist of quantum states. The equivalence of assertions (1) and (2),
which is based on Arveson’s Hahn-Banach Theorem, has been also observed in a different
setting but equivalent formulation by Jen&ov4, cf. Theorem 1 in [26], and by Heinosaari et
al. cf. Theorem 4 and Corollary 2 in [8] (our Corollary 2.3 and Corollary 2 in [8] explains
that the two cited theorems are actually equivalent).

THEOREM 3.6  With the assumptions and the notation as in Theorem 3.3 assume, in
addition, that (a3) holds as well. The following assertions are equivalent:

(1) There exists ¢ € CP(M,, My) such that ¢(A,) = B, forallv=1,..., N.

(2) The linear map g B defined at (3.3) is k-positive.

(3) The linear functional sa B: My @ Sa — C defined by (3.4) is positive.

(4) The affine space DA+ M Q@S i‘ contains at least one positive semidefinite matrix.

Proof
(1)=(2). Let ¢: M,, — M} be a completely positive map such that ¢(A,) = B, for
allv = 1,..., N. Then ¢|Sa: Sao — M is completely positive, in the sense specified

at the beginning of Section 2.3, that is, pa B = ¢|Sa is completely positive, in particular
k-positive.

(2)=(3). Assume that g g is k-positive. With notation as in (2.13), amoment of thought
shows that, foreachi, j =1,..., Nandeachv =1, ..., N, we have

k k
<(1k ® ¢a.B) (El.(,j) ® Av) o e(k)>(Ck2 — gan(A) = B, = sap (El.(’j) ® AU) ,
hence

(1 @ oa8) ©e®.e®) |, =5am(C). CeMi®Sa, (3.13)

and, consequently, s4 p maps any positive semidefinite matrix from M; ® Sa to a nonneg-
ative number.

(3)=(1). Assume that the linear functional sp p: My ® So — C defined by (3.4) is
positive, in the sense that it maps any positive element in My @ Sa = My (Sa) into R.. By
Arveson’s Hahn-Banach Theorem,[16] see the implication (c)=>(d) in Theorem 2.6 and the
argument provided there, there exists a completely positive map ¢: My — M, extending
®A.B, hence @ satisfies the same interpolation constraints as @A B.

(1)&(4). Proven in Theorem 3.3. O

Remark 3.7 Under the assumptions and notation as in Theorem 3.6, if Sp contains a
positive definite matrix, then the set Ca p is convex and compact, see Remark 3.1. Then the
set Pa B, see Corollary 3.4, is convex and compact as well.
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CoroLLARY 3.8 Ifthe x-subspace Sa is an algebra, then the set CA B is nonempty if and
only if DA B is positive semidefinite, more precisely, in this case (3.12) provides a solution
@ € Ca B of the interpolation problem.

Proof This is a consequence of Theorem 3.6, the second statement of Remark 2.8, and
the second statement of Remark 3.5. O

Example 2.9.(2) shows that the statement in the previous corollary may be true without
the assumption that the *-space S is an algebra.

Remark 3.9  Trace Preserving. Recall that a linear map ¢ : M, — Mj is trace preserving
if tr(p(A)) = tr(A) for all A € M,,. With the notation as in Theorem 3.3, let

OaB = {p € CaB | ¢ is trace preserving}, (3.14)

and we want to determine, with respect to the affine isomorphism established in Corol-
lary 3.4, how the corresponding parameterizing subset Pa g can be singled out and, im-
plicitly, to get a characterization of the solvability of the interpolation problem for quantum
channels. Solet P = [p(; 1), (j,m)] be an arbitrary matrix in Py g, where (i, /) = (i —Dn+1
and (j,m) =(j—Dn+m,fori,j=1,...,kandl,m =1, ..., n, equivalently, in tensor

notation,
k n
(k) (n)
P=3"%" pinimE ®E/.
ij=11m=1
In view of (3.9), amap ¢ € Ca p is trace invariant if and only if

tr ((p (E,(’j;)) —tr (El(",;) =8, Lm=1,...n, (3.15)

which, taking into account of Proposition 3.2, is equivalent with the conjunction of the
following affine constraints

k N k
D Pamyiny =8m — Y amiy (Z di,i,v) s Lm=1,...,n. (3.16)
i=1 v=1 i=1

Remark 3.10  Assume that Sy is an operator system. By Theorem 3.3, if the interpolation
problem has a solution then there ex1sts a positive semidefinite matrix DinD ABTM @Sy L
hence, by Lemma 2.5 we have 0 < tr(D) = tr(Da B). Therefore, under these assumptions,
a necessary condition of solvability of the interpolation problem is tr(Da ) > 0.

3.2. Orthonormalization of the input data

Theorem 3.3 gives the necessary and sufficient condition of solvability of the interpolation
problem in terms of the density matrix D g but, in order to precisely get it one might solve
the system of linear equations (3.8), with the Gramian matrix [tr(A}, A,)],v as the principal
matrix of the system. If the matrices Ay, ..., Ay are mutually orthogonal with respect to the
Hilbert-Schmidt inner product, this Gramian matrix is just the identity matrix /y. Observe
that, if this is not the case, applying the Gram-Schmidt orthonormalization algorithm to
the linearly independent input Hermitian matrices Ay, ..., Ay, we obtain an orthonormal
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system of matrices that preserves all assumptions (al)—(a3), due to the fact that the trace
of a product of two Hermitian matrices is always real. More precisely, if A’l, R A;\, is
the Gram-Schmidt orthogonalization of the sequence of linearly independent Hermitian
matrices Aq, ..., Ay then

, 1
Al = ——A,
V(A
- 1
Upp1 = Avy1 — Y (AL A DA, Al = U1, v=1.. N-1
n=1 U,
Then, we can change, accordingly, the sequence By, ..., By to Bi, R B}\,

1 1 ”
BizizBl, Bl’)H:iz Byy1— Y (A A)By |, v=1....N—1,
/(A7) tr(UU_H) =1

and observe that a linear map ¢: M, — My satisfies the constraints ¢(A,) = B,
v = 1,...,N, if and only if ¢(A]) = B], v = 1,..., N. Therefore, without loss of
generality, we can replace the assumption (a2) with the assumption

(a2') Thesetof matrices{Ay, ..., An}isorthonormal with respect to the Hilbert-Schmidt
inner product, that is, tr(A, A,) =6, forall p,v=1,..., N.

Lemma 3.11  Under the assumptions (al) and (a2'), the density matrix Da g of the linear
Junctional sa B defined at (3.4) is

N
Dap = ZBVT R A,. (3.17)

v=l1

Proof Under the assumption (a2’), the Gramian matrix of Ay, ..., Ay isthe identity matrix
Iy hence the system of linear equations (3.8) is simply solvable as d; ; , = E,-,j,,, =bjiv
foralli, j=1,...,kandallv =1,..., N, where we have taken into account that B,, are
all Hermitian matrices. By (3.7) we have

N k N

k

Dap=)Y > bj,i,vE},j?@Av =Y Bl ®A4,.
v=1i,j=1 v=1

O

Note that under the assumptions (al) and (a2’) we can always find an orthonormal basis
Al, ..., AN, ANy1, ..., A2 of My, with respect to the Hilbert-Schmidt inner product,
whose first N elements are exactly the elements of the input data A and such that all its
matrices are Hermitian. Indeed, this basically follows from the fact that S i_ is a x-space,
and the remark we made before on the Gram-Schmidt orthonormalization of a sequence of
linearly independent Hermitian matrices.

THeEOREM 3.12  Assumethatthedata Ay, ..., Ay and By, ..., By satisfy the assumptions
(al) and (a2'). Let AN+1, ..., A,2 be a sequence of Hermitian matrices in M, such that
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A1, ..., A, is an orthonormal basis of M, with respect to the Hilbert-Schmidt inner
product. The following assertions are equivalent:

(1) There exists ¢ € CP(M,,, My) such that p(A,) = B, forallv=1,...,N
(2) There exist numbers p; jv, i,j = 1,...,kandv = N + 1, ..., n%, such that

Pjiv = Dijyv and

ZBT@)A +Z Z i EY) ® Ay > 0. (3.18)

i,j=lv=N+1

Proof We use Theorem 3.3, by means of Lemmas 3.11 and 2.5, taking into account that in
order to get a positive semidefinite matrix in the affine space DA p + My ® S li- we actually
look for a Hermitian element P € My ® S j, more precisely

k n?
k
=2 D piES®A,
i j=1v=N+1
such that Do g + P > 0. O
Remarks 3.13 Assume that the data Ay, ..., Ay and By, ..., By satisfy the assumptions

(al) and (a2’).

(i) If the set Ca p is nonempty and SA is an operator system, then, as a consequence
of Lemma 3.11 and Remark 3.5, Z _ r(By)tr(Ay,) > 0.
(ii) On the other hand, from Lemma 3.11 and Remark 3.5.(2), if

N
> Bl®4, >0, (3.19)

v=1

then the linear map ¢: M,, — M defined by
k

N
9(C) = [Z b,-,j,vtr(AVC)i| , CeM, (3.20)
i,j=1

v=1

where b; ;, are the entries of the matrix B,, see (3.5), is completely positive and satisfies
the interpolation constraints ¢(A,) = B, forallv=1,..., N.

3.3. A single interpolation pair

For fixed n, k € N, consider completely positive maps ¢: M, — My in the minimal
Kraus representation, that is, ¢(A) = V*AV, for some V € My, and all A € M,. This
corresponds to the case when the rank of the Choi matrix @ of ¢ is 1. For given Hermitian
matrices A € M,, and B € M, we are interested to determine under which conditions on A
and B there exists a completely positive maps ¢ in the minimal Kraus representation such
that p(A) = B
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If A is a Hermitian n x n matrix, we consider the decomposition A = |A|'/2S4|A['/2,
where |A| = (A*A)!/? is its absolute value, while S4 = sgn(A) is a Hermitian partial
isometry, where sgn is the usual sign function: sgn(¢z) = 1fors > 0,sgn(t) = —1forz <0,
and sgn(0) = 0, and we use functional calculus for the Hermtian matrix A. Note that, with
this notation, A = S4|A]| is the polar decomposition of A. Let H4 = C" © ker(A) and,
further, consider the decomposition H4 = Hj{ ® H,, where Hf is the spectral subspace
of S4 (and of A, as well) corresponding, respectively, to the eigenvalue £1. Then, with
respect to the decomposition

C"=H} & H, ®ker(A), (3.21)
we have
Ay 0 0 Iy 0 0
A=| 0 —A_ 0|, Sa=| 0 —I; 0 [, (3.22)
0 0 0 0 0 0

where A4 actin Hf, respectively, are positive operators, and I;‘t are the identity operators
in 'Hj, respectively.

With this notation, we consider the signatures k. (A) = dim(Hﬁ) = rank(A+) and
ko(A) = dim(ker(A)). The triple (k_(A), ko(A), k+(A)) is called the inertia of A. Note
that k4 (A) is the number of positive/negative eigenvalues of the matrix A, counted with
their multiplicities, as well as the number of negative/positive squares of the quadratic form
C" 5 x > (Ax, x). In this respect, the space C" has natural structure of indefinite inner
product with respect to

[x, y]la = (Ax,y), x,yeC". (3.23)

Then, x4+ (A) coincides with the dimension of any A-maximal positive/negative subspace:
here, a subspace £ € C”" is called positive if [x, x]4 > 0 for all nonnull x € L.

LEmMma 3.14 Let A € M,, and B € My be two Hermitian matrices. Then, there exists
a completely positive map ¢ with minimal Kraus (Choi) rank equal to 1 and such that
¢(A) = B if and only if k+(B) = k+(A).

Proof Assume that B = V*AV for some V € M}, and note that for all nonnull x € H;
we have

0<[x,x]lp=(Bx,x)=(V*AVx,x) = (AVx, Vx) = [Vx, Vx]a,

hence, the subspace VH'E is A-positive, and this implies that k- (B) < k4 (A). Similarly,
we have k_(B) < k_(A).

Conversely, let us assume that k4 (B) < x4+ (A), that is, dim(Hﬁ) < dim(’Hj), and
hence there exists isometric operators J4 : H§ — Hj. In addition to the decomposition
(3.21) of C" with respect to A, we consider the like decomposition of C* with respect to B

C* = H} @ Hy @ ker(B), (3.24)
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and with respect to it, the block-matrix representation of B similar to (3.22). Then, with
respect to (3.21) and (3.24) define V € M , by

1/2 —1/2

B/ "J AL 0 0
V= 0 B2y a”'? 0o |, (3.25)
0 0 0
and then, a simple calculation shows that V*AV = B. O

THeEOREM 3.15 Let A € M,, and B € My be two Hermitian matrices. Then the following
assertions are equivalent:

(1) There exists a completely positive map ¢ : M, — My such that ¢(A) = B.
(1) If A is semidefinite, then B is semidefinite of the same type (positive/negative).
(iii) There exists m € N such that

ki(B) < muy(A). (3.26)

In addition, the minimal Kraus (Choi) rank r of a completely positive map ¢: M, — M
such that ¢(A) = B is

r=min{m € N | k1 (B) <mx+(A)}. (3.27)

Proof 1Tt takes only a moment of thought to see that the assertions (ii) and (iii) are
equivalent. Therefore, it remains to prove that the assertions (i) and (iii) are equivalent.
Assuming that there exists m € N satisfying (3.26), let r € N be defined as in (3.27). Then
there exist Hermitian matrices Bj, By, ..., B, € My suchthat B = By + By + ...+ B,
k+(Bj) < k+(A)forall j =1,...,r. By Lemma 3.14 there exist Vi, V2, ..., V, € My,
such that V¥AV; = Bj forall j = 1,...,r. Then, letting ¢ = > Vi Vit My — My
we obtain a completely positive map such that ¢(A) = B.

On the other hand, if Vi, Va, ..., V), € My, are such that Z;'.’Zl V]?“A V; = B then for
each j = 1, ..., m we have ki(V]?"AVj) < k+(A), hence k+(B) < Z;'?:l Ki(V;-kAVj) <
mi+(A), hence r < m. O

Note that Theorem 3.15 provides one more (different) argument for Corollary 3.2 in
[2], and different from the argument given in Remark 3.5.(3) as well.

4. Further results on density matrices

In this section, we consider two questions related to density matrices, first, the relation of
density matrices with Choi matrices and, second, the relation between the positivity of linear
functionals on x-subspaces generated by unit matrices with the positivity of their density
matrices.

4.1. Density matrices vs. Choi matrices

Since the correspondence between linear maps ¢ : M,, — M}, and Choi matrices ®, € My,
is a linear isomorphism and, via the Smith-Ward linear functional s,, the correspondence
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between ¢ and the density matrix Dy, is a conjugate linear isomorphism, it is natural to
ask for an explicit relation between the Choi matrix &, and Dy, . In order to do this, we
first recall the definition of the canonical shuffle operators. Briefly, this comes from the two

canonical identifications of C" ® CK with C¥", more precisely, foreach/ € {1, ..., n} and
eachi € {1,...,k}, welet - o
n n

Uei st = €=ty+i- 4.1

It is clear that U is a unitary operator C* — C*"_ hence an orthogonal kn x kn matrix.
Also, for a matrix X, out of the adjoint matrix X*, we consider its transpose X T as well as
its entrywise complex conjugate X.

ProrosiTioN 4.1 Forany linearmap ¢ : M,, — My and letting ® denote its Choi matrix,
cf. (2.1), the density matrix D associated to the Smith-Ward linear functional s, cf. (2.18)
and (2.12), is

D = U*®U, 4.2)

where U is the canonical shuffle unitary operator defined at (4.1).

Proof  Wefirstnotethat (E)®E" | i, j=1,....k, l,m = 1,...,n}isanorthonormal

I,m

basis of M; ® M,, with respect to the Hilbert-Schmidt inner product, and that, with respect
to the canonical identification of M; ® M,, >~ M (M,), that is, when viewed as block k x k
matrices with each entry an n x n matrix, with My, we have
(k) n) __ p(kn) — .
El.’j ® El’m = E(i—l)n+l,(j—1)n+m* L,j=1,...,k, I,m=1,...,n.

Fixi, j € {1,...,k}yandl,m € {1,...,n). Then,
(k) (m)) _ (kn)
S¢ (Ei,j ® El,m) =S¢ (E(i—l)n+l,(j—1)n+m>
' —
=1 (D*E((if)l)n+l,(j—l)n+m> = d(i—l)n+l,(j—1)n+ma 4.3)

where D = [d,. x]’f’;: | is the matrix representation of D, more precisely,

kn
D= dEX.
r,s=1
On the other hand, from (2.4) we have
k k) (k
Sy (E,.(,/.) ® E,(’j,),) = (p (El(r,?,) e, e!) ek = eu—tyrim- s “.4)

Therefore, in view of (4.3) and (4.4) we have

= k
di—D)n+1.(j—Dntm = Sg (E,-(,j) ® El(",,),) = Q= Dk+i,(m—1)k+ s

hence, taking into account of the definition of the canonical shuffle operator U as in (4.1),
the equality in (4.2) follows. (I

The concept of density matrices associated to linear functionals on x-subspaces opens
the possibility of generalizing the concept of a Choi matrix for linear maps with domains
x-subspaces. Note that the definition of the Choi matrix, see (2.1), involves essentially the
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matrix units which, generally, are not available in operator systems. However, in view of
Proposition 4.1 we can proceed as follows. First consider the Smith-Ward functional s,
defined as in (2.12), then consider the density matrix D, associated to s, as in (2.19), and
finally define ®, by

o, =U D, U*, (4.5)

where the bar denotes the entrywise complex conjugation and U denotes the canonical
shuffle unitary operator as in (4.1). Clearly ®, is an kn x kn matrix and, in case ¢ €
CP(S, My), the Choi matrix Cy, defined as in (4.5) is Hermitian but, at this level of generality,
depending on the x-subspace S, its positive definiteness is not guaranteed. However, if the
Choi matrix ®,, is positive semidefinite, then ¢ € CP(S, My).

4.2. Operator systems generated by matrix units

For a fixed natural number m let S be an operator system in M,,. We are interested by the
special case when S is linearly generated by a subset of matrix units in M,,, that is, there

exists a subset S C {1, ..., m}? such that S = Lin{E"™ | s € S).
Remarks 4.2 In the following, we use the interpretation of subsets S € {1, ..., m}2 as
relations on the set {1, ..., m}. Let S be arelationon {1,...,m} and let S = Lin{EAE'") |

s € S} be the linear subspace in M,, generated by the matrix units indexed in S.

(1) The linear space S is an operator system in M, if and only if S is reflexive and
symmetric.

(2) The linear space S is a *-subspace generated by ST if and only if, modulo a
permutation of indices, S = &’ @ 0, where S’ is an operator system in M,, for
some 0 < m’ < m. To see this, we observe that, if i # j are such that (i, j) € S,
then necessarily (i, i) € S and (J, j) € S since, otherwise, S may contain matrices

of type
11 01
[10}@Q [10]®Q
that are Hermitian but cannot be written as linear combinations of matrices in S+.

(3) The linear space S is a unital x-subalgebra of M,, if and only if S is an equivalence
relation.

TueorREM 4.3 Let S be a x-subspace in My, that is linearly generated by matrix units
and also linearly generated by S™. The following assertions are equivalent:

(a) Any positive linear functional s : S — C has a positive semidefinite density matrix.
(b) Sisanalgebra.

Proof (a)=(b). We divide the proof in four steps.

Step 1 We first observe that, without loss of generality, we can assume that S is an
operator system. Indeed, since S is linearly generated by S, by Remark 4.2.(2), modulo
a permutation of indices, S = S’ @ 0 where S’ is an operator system in M,,, for some
0<m' <m.
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Step 2 First observe that for m = 1 or m = 2 any operator system S C M,, generated
by a set of matrix units is an algebra hence, in view of Remark 2.8.(2), there is nothing to
prove.

Step 3 'We consider m = 3 so let S be an operator system in M3 and let § C {1, 2, 3}2
be the associated reflexive and symmetric relation as in Remark 4.2. Then S necessarily
contains all the diagonal Sq = {(1, 1), (2, 2), (3, 3)}. On the other hand, due to the symmetry
condition on S, it may contain only 3, 5, 7 or 9 elements. If S contains either 3, 5 or 9
elements it is easy to see that S is an algebra. Consequently, we are left only with the
investigation of the case when S has exactly 7 elements, and these are the cases when
S =S U{(1,2),2,1),(,3),3, D}, S =S U{(1,2),2,1),3,2),2,3)},S = Sq U
{(2,3), (3,2), (1, 3), (3, 1)}. Note that these three cases correspond to a circular permutation
of one of them and hence the proof for any one of these would be sufficient.

Let S = {(1, 1), (2,2), (3, 3), (1,2), (2, 1), (1, 3), (3, 1)}. In the following, we prove
that the corresponding operator system S = Lin S, that is not an algebra, has at least one
(actually we prove that there are infinitely many) positive linear functional whose density
matrix is not positive semidefinite. To see this, first note that

a b
S={C=|fd la,b,c,d,e, f,g € Cy, 4.6)
0

8

X OO0

and that ST is the collection of all matrices C as in (4.6) subject to the following conditions

a>0,d>0,e>0,f=bg=c, b <ad, |c|* <ae, |bl’e+|c|’d < ade. (4.7)

For each 1/ V2 < p < 1 consider the Hermitian matrix

-

1
Dy,=|p

o)
0f. (4.8)
p 0 1

It is easy to see that D, is indefinite for each 1/ V2<p<l.

We prove that the corresponding functional s, = tr(D,-) is positive for each 1/ V2 <
p < 1. To see this, let C € ST be arbitrary, that is, with the notation as in (4.6), the
conditions (4.7) must hold. Then

sp(C) =tr(D,C) =a+d+e+2pRe(b+c)
>a+d+e—2p(b] + c])

and then, taking into account that |b| + |c| has its maximal value +/a(e + d) when the
constraints (4.7) hold and that p < 1,

>a+d+e—2yale+d) = (a—e+d?=>0.

Step 4 Assume now that m > 3 and assume that S is an operator system in M,, that
is not an algebra. By Remark 4.2.(2), there exist distinct 7, j,/ € {1, ..., m} such that
@, j),(j,I) € Sbut (i,/) € S. Modulo a reindexing, without loss of generality we can
assume thati = 2, j = 1, and [ = 3. For each l/ﬁ < p < 1 we consider the matrix D,
as in (4.8) and let 5p = D, ® 0 € M,,. From what has been proven in Step 3, it follows
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that the functional s, = tr(ﬁp-) on M,, is positive but its density matrix 5p is not positive
semidefinite.
(b)=(a). This is a consequence of Remark 2.8.(2). (|
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