254 research outputs found

    Clostridium chauvoei, an evolutionary dead-end pathogen

    Get PDF
    Full genome sequences of 20 strains of Clostridium chauvoei, the etiological agent of blackleg of cattle and sheep, isolated from four different continents over a period of 64 years (1951–2015) were determined and analyzed. The study reveals that the genome of the species C. chauvoei is highly homogeneous compared to the closely related species C. perfringens, a widespread pathogen that affects human and many animal species. Analysis of the CRISPR locus is sufficient to differentiate most C. chauvoei strains and is the most heterogenous region in the genome, containing in total 187 different spacer elements that are distributed as 30 – 77 copies in the various strains. Some genetic differences are found in the 3 allelic variants of fliC1, fliC2 and fliC3 genes that encode structural flagellin proteins, and certain strains do only contain one or two alleles. However, the major virulence genes including the highly toxic C. chauvoei toxin A, the sialidase and the two hyaluronidases are fully conserved as are the metabolic and structural genes of C. chauvoei. These data indicate that C. chauvoei is a strict ruminant-associated pathogen that has reached a dead end in its evolution

    Improving the science-policy dialogue to meet the challenges of biodiversity conservation: having conversations rather than talking at one-another

    Get PDF
    A better, more effective dialogue is needed between biodiversity science and policy to underpin the sustainable use and conservation of biodiversity. Many initiatives exist to improve communication, but these largely conform to a ‘linear’ or technocratic model of communication in which scientific “facts” are transmitted directly to policy advisers to “solve problems”. While this model can help start a dialogue, it is, on its own, insufficient, as decision taking is complex, iterative and often selective in the information used. Here, we draw on the literature, interviews and a workshop with individuals working at the interface between biodiversity science and government policy development to present practical recommendations aimed at individuals, teams, organisations and funders. Building on these recommendations, we stress the need to: (a) frame research and policy jointly; (b) promote inter- and trans-disciplinary research and “multi-domain” working groups that include both scientists and policy makers from various fields and sectors; (c) put in place structures and incentive schemes that support interactive dialogue in the long-term. These are changes that are needed in light of continuing loss of biodiversity and its consequences for societal dependence on and benefits from nature

    Effects of peripapillary scleral stiffening on the deformation of the lamina cribrosa

    Get PDF
    Purpose: Scleral stiffening has been proposed as a treatment for glaucoma to protect the lamina cribrosa (LC) from excessive intraocular pressure–induced deformation. Here we experimentally evaluated the effects of moderate stiffening of the peripapillary sclera on the deformation of the LC. Methods: An annular sponge, saturated with 1.25% glutaraldehyde, was applied to the external surface of the peripapillary sclera for 5 minutes to stiffen the sclera. Tissue deformation was quantified in two groups of porcine eyes, using digital image correlation (DIC) or computed tomography imaging and digital volume correlation (DVC). In group A (n = 14), eyes were subjected to inflation testing before and after scleral stiffening. Digital image correlation was used to measure scleral deformation and quantify the magnitude of scleral stiffening. In group B (n = 5), the optic nerve head region was imaged using synchrotron radiation phase-contrast microcomputed tomography (PC ÎŒCT) at an isotropic spatial resolution of 3.2 ÎŒm. Digital volume correlation was used to compute the full-field three-dimensional deformation within the LC and evaluate the effects of peripapillary scleral cross-linking on LC biomechanics. Results: On average, scleral treatment with glutaraldehyde caused a 34 ± 14% stiffening of the peripapillary sclera measured at 17 mm Hg and a 47 ± 12% decrease in the maximum tensile strain in the LC measured at 15 mm Hg. The reduction in LC strains was not due to cross-linking of the LC. Conclusions: Peripapillary scleral stiffening is effective at reducing the magnitude of biomechanical strains within the LC. Its potential and future utilization in glaucoma axonal neuroprotection requires further investigation

    Quantitative mapping of scleral fiber orientation in normal rat eyes

    Get PDF
    Purpose. Previous work has suggested a major role of scleral biomechanics in the pathogenesis of glaucoma. Since fiber orientation in connective tissues is a key determinant of tissue biomechanics, experimental characterization of scleral fiber orientation is needed to fully understand scleral biomechanics. This is a report of baseline experimental measurements of fiber orientation in whole normal rat scleras. Methods. Twenty ostensibly normal Norway brown rat eyes were fixed in 4% paraformaldehyde. The scleras were cleaned of intra- and extraorbital tissues and dissected into five patches, and each patch was glycerol treated to maximize its transparency. Fiber orientation was measured using small-angle light scattering (SALS). Scattering patterns were analyzed to extract two microstructural parameters at each measurement location—the preferred fiber orientation and the degree of alignment—yielding a fiber orientation map for each sclera. Results. Rat sclera is structurally anisotropic with several consistent features. At the limbus, fibers were highly aligned and organized primarily into a distinct ring surrounding the cornea. In the equatorial region, the fibers were primarily meridionally aligned. In the posterior and peripapillary region, the scleral fibers were mostly circumferential but less aligned than those in the anterior and equatorial regions. Conclusions. Circumferential scleral fibers may act as reinforcing rings to limit corneal and optic nerve head deformations, whereas equatorial meridional fibers may either provide resistance against extraocular muscle forces or limit globe axial elongation
    • 

    corecore