92 research outputs found

    Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    Get PDF
    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report

    Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    Get PDF
    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing

    Insulation of a synthetic hydrogen metabolism circuit in bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits <it>in vivo </it>has not been pursued.</p> <p>Results</p> <p>Here we show that a synthetic hydrogen-producing electron transfer circuit in <it>Escherichia coli </it>can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds.</p> <p>Conclusions</p> <p>Through the construction and characterization of a synthetic metabolic circuit <it>in vivo</it>, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.</p

    Towards a Synthetic Chloroplast

    Get PDF
    The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices
    • …
    corecore