218 research outputs found

    Mutation of Rubie, a Novel Long Non-Coding RNA Located Upstream of Bmp4, Causes Vestibular Malformation in Mice

    Get PDF
    Background: The vestibular apparatus of the vertebrate inner ear uses three fluid-filled semicircular canals to sense angular acceleration of the head. Malformation of these canals disrupts the sense of balance and frequently causes circling behavior in mice. The Epistatic circler (Ecl) is a complex mutant derived from wildtype SWR/J and C57L/J mice. Ecl circling has been shown to result from the epistatic interaction of an SWR-derived locus on chromosome 14 and a C57L-derived locus on chromosome 4, but the causative genes have not been previously identified. Methodology/Principal Findings: We developed a mouse chromosome substitution strain (CSS-14) that carries an SWR/J chromosome 14 on a C57BL/10J genetic background and, like Ecl, exhibits circling behavior due to lateral semicircular canal malformation. We utilized CSS-14 to identify the chromosome 14 Ecl gene by positional cloning. Our candidate interval is located upstream of bone morphogenetic protein 4 (Bmp4) and contains an inner ear-specific, long non-coding RNA that we have designated Rubie (RNA upstream of Bmp4 expressed in inner ear). Rubie is spliced and polyadenylated, and is expressed in developing semicircular canals. However, we discovered that the SWR/J allele of Rubie is disrupted by an intronic endogenous retrovirus that causes aberrant splicing and premature polyadenylation of the transcript. Rubie lies in the conserved gene desert upstream of Bmp4, within a region previously shown to be important for inner ear expression of Bmp4. We found that the expression patterns of Bmp4 and Rubie are nearly identical in developing inner ears

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Defining a spinal microcircuit that gates myelinated afferent input: implications for tactile allodynia

    Get PDF
    Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I–IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Meta-DiSc: a software for meta-analysis of test accuracy data

    Get PDF
    BACKGROUND: Systematic reviews and meta-analyses of test accuracy studies are increasingly being recognised as central in guiding clinical practice. However, there is currently no dedicated and comprehensive software for meta-analysis of diagnostic data. In this article, we present Meta-DiSc, a Windows-based, user-friendly, freely available (for academic use) software that we have developed, piloted, and validated to perform diagnostic meta-analysis. RESULTS: Meta-DiSc a) allows exploration of heterogeneity, with a variety of statistics including chi-square, I-squared and Spearman correlation tests, b) implements meta-regression techniques to explore the relationships between study characteristics and accuracy estimates, c) performs statistical pooling of sensitivities, specificities, likelihood ratios and diagnostic odds ratios using fixed and random effects models, both overall and in subgroups and d) produces high quality figures, including forest plots and summary receiver operating characteristic curves that can be exported for use in manuscripts for publication. All computational algorithms have been validated through comparison with different statistical tools and published meta-analyses. Meta-DiSc has a Graphical User Interface with roll-down menus, dialog boxes, and online help facilities. CONCLUSION: Meta-DiSc is a comprehensive and dedicated test accuracy meta-analysis software. It has already been used and cited in several meta-analyses published in high-ranking journals. The software is publicly available at
    corecore