2,869 research outputs found
Connection between type B (or C) and F factorizations and construction of algebras
In a recent paper (Del Sol Mesa A and Quesne C 2000 J. Phys. A: Math. Gen. 33
4059), we started a systematic study of the connections among different
factorization types, suggested by Infeld and Hull, and of their consequences
for the construction of algebras. We devised a general procedure for
constructing satellite algebras for all the Hamiltonians admitting a type E
factorization by using the relationship between type A and E factorizations.
Here we complete our analysis by showing that for Hamiltonians admitting a type
F factorization, a similar method, starting from either type B or type C ones,
leads to other types of algebras. We therefore conclude that the existence of
satellite algebras is a characteristic property of type E factorizable
Hamiltonians. Our results are illustrated with the detailed discussion of the
Coulomb problem.Comment: minor changes, 1 additional reference, final form to be published in
JP
A Consistent Spectral Model of WR 136 and its Associated Bubble NGC 6888
We analyse whether a stellar atmosphere model computed with the code CMFGEN
provides an optimal description of the stellar observations of WR 136 and
simultaneously reproduces the nebular observations of NGC 6888, such as the
ionization degree, which is modelled with the pyCloudy code. All the
observational material available (far and near UV and optical spectra) were
used to constrain such models. We found that even when the stellar luminosity
and the mass-loss rate were well constrained, the stellar temperature T_* at
tau = 20, can be in a range between 70 000 and 110 000 K. When using the nebula
as an additional restriction we found that the stellar models with T_* \sim 70
000 K represent the best solution for both, the star and the nebula. Results
from the photoionization model show that if we consider a chemically
homogeneous nebula, the observed N^+/O^+ ratios found in different nebular
zones can be reproduced, therefore it is not necessary to assume a chemical
inhomogeneous nebula. Our work shows the importance of calculating coherent
models including stellar and nebular constraints. This allowed us to determine,
in a consistent way, all the physical parameters of both the star and its
associated nebula. The chemical abundances derived are 12 + log(N/H) = 9.95, 12
+ log(C/H) = 7.84 and 12 + log(O/H) = 8.76 for the star and 12 + log(N/H) =
8.40, 12 + log(C/H) = 8.86 and 12 + log(O/H) = 8.20. Thus the star and the
nebula are largely N- and C- enriched and O-depleted.Comment: 17 pages, 8 figures, 8 tables; MNRAS accepte
High-contrast imaging of Sirius~A with VLT/SPHERE: Looking for giant planets down to one astronomical unit
Sirius has always attracted a lot of scientific interest, especially after
the discovery of a companion white dwarf at the end of the 19th century. Very
early on, the existence of a potential third body was put forward to explain
some of the observed properties of the system. We present new coronagraphic
observations obtained with VLT/SPHERE that explore, for the very first time,
the innermost regions of the system down to 0.2" (0.5 AU) from Sirius A. Our
observations cover the near-infrared from 0.95 to 2.3 m and they offer the
best on-sky contrast ever reached at these angular separations. After detailing
the steps of our SPHERE/IRDIFS data analysis, we present a robust method to
derive detection limits for multi-spectral data from high-contrast imagers and
spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at
0.2", ~16.3 mag in the 0.4-1.0" range and down to 19 mag at 3.7". In physical
units, our observations are sensitive to giant planets down to 11 at
0.5 AU, 6-7 in the 1-2 AU range and ~4 at 10 AU. Despite
the exceptional sensitivity of our observations, we do not report the detection
of additional companions around Sirius A. Using a Monte Carlo orbital analysis,
we show that we can reject, with about 50% probability, the existence of an 8
planet orbiting at 1 AU. In addition to the results presented in the
paper, we provide our SPHERE/IFS data reduction pipeline at
http://people.lam.fr/vigan.arthur/ under the MIT license.Comment: 16 pages, 10 figures, accepted for publication in MNRA
UMD Banach spaces and square functions associated with heat semigroups for Schr\"odinger and Laguerre operators
In this paper we define square functions (also called Littlewood-Paley-Stein
functions) associated with heat semigroups for Schr\"odinger and Laguerre
operators acting on functions which take values in UMD Banach spaces. We extend
classical (scalar) L^p-boundedness properties for the square functions to our
Banach valued setting by using \gamma-radonifying operators. We also prove that
these L^p-boundedness properties of the square functions actually characterize
the Banach spaces having the UMD property
To What Extent Does Land Use Catchment Lead to the Design of Junction along EDSA?
The coordination of transport and land use have proven to be difficult in the developing world. Three junctions along EDSA (Epifanio de Los Santos Avenue) were analysed and investigated upon how land use affects the behaviour of traffic on a theoretical basis of trip generation. Each junction was modelled on VISSIM, and this paper uses average speed, queue length and average delay as assessment indicators to conduct the comparison. The relationship between the land use pattern and traffic activity was evident in each case study with regard to the occupancy of land. Thus, stronger implementation of policies and better governance is required to alleviate the issues found and raised from each of the case studies and literature
- …