13,505 research outputs found

    A preliminary investigation of trunk and wrist kinematics when using drivers with different shaft properties

    Get PDF
    It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly, determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (Mean ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between-driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60 – 67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties

    Quasi-stationary states and the range of pair interactions

    Full text link
    "Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let

    The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors

    Full text link
    We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N2_2 and O2_2, and N2_2 bubbled through liquid H2_2O and alcohols to identify whether phase-related structural/surface differences affect their response. Both WZ and ZB give poor gate characteristics in dry state. Adsorption of polar species reduces off-current by 2-3 orders of magnitude, increases on-off ratio and significantly reduces sub-threshold slope. The key difference is the greater sensitivity of WZ to low adsorbate level. We attribute this to facet structure and its influence on the separation between conduction electrons and surface adsorption sites. We highlight the important role adsorbed species play in nanowire device characterisation. WZ is commonly thought superior to ZB in InAs nanowire transistors. We show this is an artefact of the moderate humidity found in ambient laboratory conditions: WZ and ZB perform equally poorly in the dry gas limit yet equally well in the wet gas limit. We also highlight the vital role density-lowering disorder has in improving gate characteristics, be it stacking faults in mixed-phase WZ or surface adsorbates in pure-phase nanowires.Comment: Accepted for publication in Nanotechnolog

    Possible origin of 60-K plateau in the YBa2Cu3O(6+y) phase diagram

    Full text link
    We study a model of YBa2Cu3O(6+y) to investigate the influence of oxygen ordering and doping imbalance on the critical temperature Tc(y) and to elucidate a possible origin of well-known feature of YBCO phase diagram: the 60-K plateau. Focusing on "phase only" description of the high-temperature superconducting system in terms of collective variables we utilize a three-dimensional semi microscopic XY model with two-component vectors that involve phase variables and adjustable parameters representing microscopic phase stiffnesses. The model captures characteristic energy scales present in YBCO and allows for strong anisotropy within basal planes to simulate oxygen ordering. Applying spherical closure relation we have solved the phase XY model with the help of transfer matrix method and calculated Tc for chosen system parameters. Furthermore, we investigate the influence of oxygen ordering and doping imbalance on the shape of YBCO phase diagram. We find it unlikely that oxygen ordering alone can be responsible for the existence of 60-K plateau. Relying on experimental data unveiling that oxygen doping of YBCO may introduce significant charge imbalance between CuO2 planes and other sites, we show that simultaneously the former are underdoped, while the latter -- strongly overdoped almost in the whole region of oxygen doping in which YBCO is superconducting. As a result, while oxygen content is increased, this provides two counter acting factors, which possibly lead to rise of 60K plateau. Additionally, our result can provide an important contribution to understanding of experimental data supporting existence of multicomponent superconductivity in YBCO.Comment: 9 pages, 8 figures, submitted to PRB, see http://prb.aps.or

    Spanning tree generating functions and Mahler measures

    Full text link
    We define the notion of a spanning tree generating function (STGF) ∑anzn\sum a_n z^n, which gives the spanning tree constant when evaluated at z=1,z=1, and gives the lattice Green function (LGF) when differentiated. By making use of known results for logarithmic Mahler measures of certain Laurent polynomials, and proving new results, we express the STGFs as hypergeometric functions for all regular two and three dimensional lattices (and one higher-dimensional lattice). This gives closed form expressions for the spanning tree constants for all such lattices, which were previously largely unknown in all but one three-dimensional case. We show for all lattices that these can also be represented as Dirichlet LL-series. Making the connection between spanning tree generating functions and lattice Green functions produces integral identities and hypergeometric connections, some of which appear to be new.Comment: 26 pages. Dedicated to F Y Wu on the occasion of his 80th birthday. This version has additional references, additional calculations, and minor correction

    Maturity, physical ability, technical skill and coaches\u27 perception of semi-elite adolescent Australian footballers

    Get PDF
    Purpose: To confirm the effect of maturational differences on anthropometric and physical testing and explore the effect of maturation on technical skill and coaches’ perceptions of skill in adolescent Australian footballers. Methods: Athletes were recruited from a semi-elite under 16 competition (n = 94, age 15.7 ± 0.3 years) and completed anthropometric, physical, and technical skill tests. Coaches from each team provided subjective ratings of athletes’ technical skills. Maturation groups were derived from years from peak height velocity estimates, with classifications either later, average or earlier maturing. Results: Effect size comparisons revealed very large to moderate effects between groups for anthropometric measures and performance in sprint and jump tasks. Small to moderate effects were reported between groups for coaches’ perceptions of skill, with the earlier maturing group perceived to have better overall technical skills, marking and ball winning abilities. Small to trivial effects were reported for performance in the technical skill tests. Conclusions: Despite no differences in skill tests, earlier maturing athletes may be afforded significant selection and competition advantages due to advanced physical capacities and coaches’ perceptions of skill

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition
    • …
    corecore