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ABSTRACT 21 

It is unknown whether skilled golfers will modify their kinematics when using drivers of different 22 

shaft properties. This study aimed to firstly, determine if golf swing kinematics and swing 23 

parameters and related launch conditions differed when using modified drivers, then secondly, 24 

determine which kinematics were associated with clubhead speed. Twenty high level amateur male 25 

golfers (Mean ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional trunk and wrist 26 

kinematics collected for two driver trials. Swing parameters and related launch conditions were 27 

collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p 28 

≤ 0.003) between-driver differences; specifically, faster trunk axial rotation velocity and an early 29 

wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high 30 

kick point driver. Regression models for both drivers explained a significant amount of variance 31 

(60 – 67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, 32 

indicating the importance of the wrists in producing clubhead speed regardless of driver shaft 33 

properties. 34 

2 
 



INTRODUCTION 35 

A golfer who is able to generate faster clubhead speeds can increase hitting distance off the tee 36 

(Fletcher & Hartwell, 2004) and this may help reduce the number of shots per round if driving 37 

accuracy can be maintained (Wiseman & Chatterjee, 2006). Factors relating to an individual’s 38 

technique as well as equipment factors (the club they hit with) can be modified in an attempt to 39 

improve driving distance. In an attempt to understand driving outcome measures of the ball, 40 

previous investigations have modified properties of the driver’s shaft such as, shaft length (Lacy, 41 

Yu, Axe, & Luczak, 2012), shaft mass (Haeufle, Worobets, Wright, Haeufle, & Stefanyshyn, 42 

2012) and shaft stiffness (Betzler, 2010).  43 

 44 

Shaft stiffness has typically been graded using a qualitative rating such as ladies, regular, stiff and 45 

extra-stiff (Betzler, 2010). However, shaft stiffness can be more precisely defined using flexural 46 

rigidity (EI) testing. This approach gives a quantitative grading of stiffness by examining the 47 

‘bending stiffness’ at multiple locations along the shaft, rather than its general shape of the shaft 48 

under static load (Figure 1) (Brouillette, 2002; Joyce, Burnett, & Matthews, 2013b). This gives a 49 

more precise estimate of a shaft’s complete bending profile from the bottom of the grip to the 50 

shaft’s tip. Experimentally, swing kinematics of highly skilled golfers do not differ when hitting 51 

with drivers fitted with shafts of modifiable stiffness (Betzler, 2010; Betzler et al., 2011). This may 52 

possibly be due to the amount of movement variability in kinematics, which have shown to be 53 

highly variable between highly skilled golfers when optimising ball velocity (Tucker, Anderson, 54 

& Kenny, 2013).  55 

 56 

INSERT FIGURE 1 ABOUT HERE 57 
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 58 

Another modifiable shaft property, the kick point, is usually determined in a static manner and is 59 

considered to be the maximum bend point from a line joining the two ends of a loaded shaft 60 

(Wishon, 2011). A shaft with a high kick point will have a maximum bend point closer to the grip, 61 

while a shaft with a low kick point will have its point of maximum bend closer to the clubhead. 62 

Recent research has found that kick point location can affect swing parameters and related launch 63 

conditions (Joyce, Burnett, Reyes, & Herbert, 2014), specifically, with a high kick point shaft 64 

providing a lower launch angle of the ball and more spin than a low kick point shaft (Cheong, 65 

Kang, & Jeong, 2006; Joyce et al., 2014).  66 

 67 

Modifiable shaft properties are available to assist in producing desired swing parameters and 68 

related launch conditions for golfers of varied skill levels (Worobets & Stefanyshyn, 2007; Cheong 69 

et al., 2006; Wishon, 2011; Haeufle et al., 2012). Research undertaken to understand how highly 70 

skilled golfers influence swing parameters and related launch conditions such as clubhead speed, 71 

and the effect this has on shaft performance has largely been inconclusive. However, it is thought 72 

to be related to manipulations of upper body kinematics (Betzler, 2010; MacKenzie & Sprigings, 73 

2009; Suzuki, Hoshino, & Kobayashi, 2009; Worobets & Stefanyshyn, 2007). Previous 74 

experimental studies have examined trunk kinematics of low handicap golfers and their effect on 75 

clubhead speed (Chu, Sell, & Lephart, 2010; Joyce, Burnett, Cochrane, & Ball, 2013a). 76 

Maximising angular displacement between the pelvis and shoulders at the top of the backswing 77 

(X-factor), and the associated countermovement of the pelvis at the start of the downswing (X-78 

factor stretch) for example, has been shown to contribute to greater clubhead speed (Cheetham, 79 

Martin, & Mottram, 2001; Chu et al., 2010). Further three-dimensional methods used to analyse 80 
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X-factor have allowed the trunk to be modelled as multiple segments (Joyce, Burnett, & Ball, 81 

2010), revealing significant associations between the lower trunk relative to pelvis angular 82 

displacement with clubhead speed in homogenous cohorts (Joyce et al., 2013a).  83 

 84 

In addition to the trunk kinematics, the involvement of the ‘leading’ arm (i.e. the left arm for right 85 

handed golfers) has also been shown to be an important factor in influencing clubhead speed 86 

(Sprigings & Neal, 2000; Teu, Kim, Fuss, & Tan, 2006). Highly skilled golfers are known to 87 

exhibit a relatively late release of the wrists (i.e. a more delayed movement of the wrists from a 88 

radially deviated wrist position) in an attempt to maximise clubhead speed at ball impact (Betzler, 89 

2010; Sprigings & Neal, 2000). In fact a delayed wrist release may result in increases in clubhead 90 

speed of between 9-46% (Milburn, 1982; Sprigings & Neal, 2000). Given the importance of wrist 91 

kinematics in contributing to the generation of high clubhead speeds, it would be of value to golfers 92 

and golf coaches to investigate upper body kinematics when using drivers with differing kick 93 

points. Although previous research has identified between-club differences in body kinematics, 94 

and their association with fast clubhead speeds, this has yet to be examined when using the same 95 

club (driver) fitted with shafts of differing kick point locations. 96 

 97 

Based on the investigations that describe the interaction between golfer and club, it was 98 

hypothesised that a difference in golf swing kinematics would be seen for highly skilled golfers 99 

hitting with drivers of modifiable shaft properties. Therefore, the first aim of the study was to 100 

determine whether trunk and wrist kinematics, and swing parameters and related launch conditions 101 

differed when using drivers fitted with shafts of differing properties, i.e. kick point location (low 102 

and high), flexural rigidity profile and mass (56 g and 78 g). The second aim of the study was to 103 
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determine if trunk and wrist kinematics were associated with clubhead speed for each of these 104 

drivers. 105 

 106 

   107 

METHODS 108 

PARTICIPANTS 109 

Participants recruited for this study included 20 right handed, high level amateur male golfers 110 

(Mean ± SD: age = 24.6 ± 5.6 years, registered golfing handicap = 1.9 ± 1.9 score). At the time of 111 

testing, participants had a registered golfing handicap of 5 or lower, were aged between 18 and 35 112 

years, and had no back pain in the previous 12 months prior to testing (as assessed by a modified 113 

Nordic Low Back Pain questionnaire). Ethical approval to conduct the study was provided by the 114 

Edith Cowan University Institutional Human Research Ethics Committee. 115 

 116 

EXPERIMENTAL PROTOCOL 117 

A repeated-measures design was utilised for this study, with each participant hitting five shots 118 

each with two drivers (i.e. 10 shots). The two drivers were fitted with shafts with differing kick 119 

point location and flexural rigidity profile (Figure 2). A 56 g ‘stiff’ shaft known to have a low kick 120 

point, and a 78 g ‘stiff’ shaft known to have a high kick point (Joyce et al., 2013b) were used in 121 

this study. This between-shaft approach to investigate differences in golf swing kinematics and 122 

swing parameters and related launch conditions has been used in previous research studies 123 

(Betzler, 2010). Isolating the effect of a single club parameter can have its difficulties in golf 124 

research (Haeufle et al., 2012) and in this study it was not feasible to change kick point location 125 

without having the shaft mass also modified. The driver lengths, grips and clubhead were identical. 126 

6 
 



The decision of what driver clubhead and shaft selection was made in consultation with an AAA-127 

rated Australian Professional Golfers Association teaching professional, who determined which 128 

drivers were typically used by elite level male golfers. The properties of each driver are shown in 129 

Table 1, with the flexural rigidity (quantitative stiffness) of each driver shown in Figure 2. The 130 

procedures relating to the collation of these driver properties are reported elsewhere (Joyce et al., 131 

2014). All properties in Table 1 were considered when explaining the between-club differences in 132 

golf swing kinematics and regression equations in the discussion.  133 

 134 

INSERT TABLE 1 ABOUT HERE 135 

INSERT FIGURE 2 ABOUT HERE 136 

 137 

Testing for each participant was conducted on two days with players using a different driver on 138 

each day. The order of testing for each driver was randomised and the two sessions were separated 139 

by 24-48 hours. It has been suggested that experienced golfers need time to familiarise themselves 140 

with a new club (Kenny, Wallace, & Otto, 2008). Therefore, prior to testing on each day, 141 

participants completed two familiarisation sessions, i.e. an outdoor session and then an indoor 142 

session prior to the actual laboratory testing session. These sessions were always completed in this 143 

order and they were conducted within one hour of each other. The outdoor session was conducted 144 

at a driving range located at a golf course located nearby to the Biomechanics laboratory where 145 

testing took place. This session was performed first so each participant had the opportunity to 146 

receive visual feedback via the ball’s trajectory and its final landing position. Participants then 147 

completed the indoor familiarisation session at the laboratory prior to data collection. The 148 

familiarisation protocol was the same for each session with all participants hitting 10-20 shots each 149 
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time. The exact number of shots was determined by the participant deciding when they felt 150 

sufficiently familiar with the driver. Total time required for the indoor familiarisation and testing 151 

was approximately 90 minutes on each day.  152 

 153 

DATA COLLECTION 154 

A 10-camera MX-F20 Vicon-Peak Motion Analysis system (Oxford Metrics, Oxford, UK) 155 

operating at 500 Hz was used to capture all 3D kinematics. During testing, participants wore 156 

bicycle shorts and golf shoes only and a total of twenty one retro-reflective markers were attached 157 

to them during static trials. The six lower arm and hand ‘anatomical’ markers were then removed 158 

for dynamic trials. A further two markers were attached to the shaft of the driver during the 159 

dynamic trials to identify top of the backswing, and a piece of retro-reflective tape was attached to 160 

the ball to identify ball impact (Table 2). These markers were used to provide 3D golf swing 161 

kinematics of the body, create a multi-segment trunk model (Joyce et al., 2010) as well as a model 162 

of the leading arm that being; the left arm for right-handed golfers (Betzler, 2010; Sweeney, Mills, 163 

Mankad, Elliott, & Alderson, 2012). These models were developed using Vicon BodyBuilder 164 

V.3.6.1 and the complete model was then used in Vicon Nexus V.1.7.1 (Oxford, UK) to obtain all 165 

kinematic variables (as described below). 166 

 167 

INSERT TABLE 2 ABOUT HERE 168 

 169 

The multi-segment trunk model consisted of three segments: trunk, lower trunk and pelvis. Table 170 

2 shows the markers which define each reference frame from which each segment was created. 171 

Cardan angles were reported for the trunk (shoulders – pelvis reference frames) and lower trunk 172 
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(lower trunk – pelvis reference frames) were reported using a ZYX (lateral bending, 173 

flexion/extension and axial rotation respectively) order of rotation (Joyce et al., 2010). Positive 174 

values indicated trunk extension, right lateral bending and left axial rotation and negative values 175 

indicating trunk flexion, left lateral bending and right axial rotation.  176 

 177 

The wrist joint was modeled using three-marker clusters placed on the forearm and the hand and 178 

these were positioned along with the six anatomical markers on the forearm and hand during the 179 

static calibration trials. The anatomical markers were removed and produced virtual anatomical 180 

markers for dynamic trials, as not to impede the natural movement of the wrist in each participant’s 181 

golf swing (Cappozzo, Catani, Leardini, Benedetti, & Croce, 1996). Cardan angles for the wrist 182 

were also reported using a XYZ order of rotation (Betzler, 2010). With previous investigations 183 

suggesting ulnar/radial deviation at the wrist joint is important for increasing clubhead speed 184 

(Sprigings & Neal., 2000; Teu et al., 2006), it was the wrist movement which was of interest for 185 

this study. Positive values indicated radial deviation and negative values indicated ulnar deviation. 186 

 187 

DATA ANALYSIS 188 

Two critical events in the golf swing were used in this study; top of backswing and ball impact. 189 

Top of the backswing was identified as the frame where the two club markers changed direction 190 

to initiate the downswing (Joyce et al., 2013a; Myers et al., 2008). Ball impact was defined as the 191 

frame immediately before when the ball (fitted with a piece of retro-reflective tape) was first seen 192 

to move after contact (Joyce et al., 2013b). Maximal trunk and lower trunk rotation was determined 193 

to be the peak value shortly after the top of the backswing. This variable (also known as ‘x-factor 194 

stretch’) was obtained due to the pelvis counter-rotating to commence the downswing while the 195 
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shoulders remained relatively still which increases the separation angle (Cheetham et al., 2001). 196 

Wrist release was defined as a rate of change threshold point of greater than 5%, from that of the 197 

previous data point for wrist angular displacement. The point of wrist release was defined as a 198 

percentage value during the downswing from top of the backswing (0 %) to ball impact (100 %) 199 

 200 

Initially, 28 variables relating to trunk and wrist kinematics were collected however, after 201 

examination of correlation matrices, a high degree of multicollinearity was seen to exist between 202 

some of these variables. Consequently, a reduced total of 20 variables were included in the final 203 

analysis (see Table 3). A further four variables were quantified relating to swing parameters and 204 

related launch conditions (see Table 4).  205 

 206 

From the five trials recorded for each driver, three were chosen for analysis based on maximal 207 

clubhead speed, the ball landing within a predicted 37 m wide fairway (from the launch monitor 208 

described below), and had minimal marker drop out. All trials were smoothed using a Woltring 209 

filter with a mean square error of 20mm² (Woltring, 1986). Ensemble averages for the trunk and 210 

lower trunk angular displacement data, as well as wrist ulnar/radial deviation between top of 211 

backswing and ball impact were created. In preparation for the ensemble average process, all data 212 

were time normalised (0-100%) using cubic spine interpolation  213 

 214 

A real-time launch monitor (PureLaunch™, Zelocity, USA) was used to measure four swing 215 

parameters (clubhead speed at ball impact and attack angle of the clubface) and their related launch 216 

conditions (ball velocity and launch angle).   217 

 218 
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STATISTICAL ANALYSIS 219 

For the first aim of the study, i.e. to determine whether between-driver differences existed for all 220 

trunk and wrist kinematics examined in this study, a one-way repeated measures ANOVA was 221 

used. Data from each of the three trials per driver was used. For the trunk and wrist kinematic 222 

variables there were 20 between-club comparisons conducted so a Bonferroni adjustment of the p-223 

value (p ≤ 0.003) was made to correct the family wise error rate. For the four swing parameters 224 

and their related launch conditions, the critical p-value value was adjusted to p ≤ 0.013. Intra-class 225 

correlation coefficient (ICC) and standard error of mean (SEM) statistics were used to determine 226 

the within-trial reliability of all variables listed in Table 3. According to Fleiss (1986), ICC values 227 

greater than 0.75 were considered as excellent, ICC values between 0.40 and 0.75 were considered 228 

as fair to good, and ICC values less than 0.4 were considered as poor. As Fleiss’ fair to good values 229 

spanned a large range, reliability for the purposes of this study was considered to be good when 230 

ICC values ranged from 0.60 to 0.74 (Gstoettner et al., 2007). 231 

 232 

Relating to the second aim of the study, stepwise linear regression models were generated for each 233 

driver, in which swing kinematics were the independent variables, and the clubhead speed of each 234 

driver was the dependent variable. Again, all three trials per driver were used in each of these 235 

models. All assumptions relating to these models were met. All statistical analyses were 236 

undertaken using STATA V9.1 (Stata Corp. Texas, USA). 237 

 238 

RESULTS 239 

Ensemble average data of the angular displacement and velocity of the trunk, lower trunk and wrist 240 

for the two drivers from the top of the backswing (0 %) to ball impact (100 %) are shown in Figures 241 
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3 and 4 respectively. While the descriptive data relating to trunk and wrist kinematics for both 242 

drivers are reported in Table 3. There was excellent reliability for kinematic variables for both 243 

drivers (ICC = 0.859 – 0.996, SEM = 0.4 – 44.7) (Table 3). Results from the one-way repeated 244 

measures ANOVA revealed that there were four significant (p ≤ 0.003) between-driver differences. 245 

With respect to the trunk, a larger amount of left lateral bending was reported at the top of the 246 

backswing, as well as there being faster axial rotation velocity being evident at ball impact for the 247 

driver fitted with the low kick point shaft. Further, the lower trunk segment showed a larger amount 248 

of maximum axial rotation for the driver fitted with the high kick point shaft. Finally, the wrists 249 

were released 4.3 % later (which translates to 0.044 s) in the downswing, for the driver fitted with 250 

the high kick point shaft when compared to the driver fitted with the low kick point shaft. Prior to 251 

the 5% rate of change threshold point, the percentage change was less than 4% for all data, and a 252 

minimum of 20% thereafter.  Analysis of the swing parameters and their related launch conditions 253 

revealed a significantly lower launch angle for the high kick point driver (Table 4). 254 

 255 

INSERT FIGURE 3-4 ABOUT HERE 256 

INSERT TABLES 3-4 ABOUT HERE 257 

 258 

The results from the regression analyses are shown in Table 5. The regression models for each 259 

driver were able to explain a significant amount of variance in clubhead speed. Specifically, 60% 260 

of variance was explained for the driver fitted with the shaft containing the low kick point and 67% 261 

of variance was explained for the driver fitted with the shaft containing the high kick point. For 262 

each model, the two variables most strongly associated with clubhead speed were related to the 263 

wrist. For the driver with the high kick point shaft wrist release point in the downswing (β = 0.415) 264 
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and radial deviation of the wrist at the top of the backswing (β = 0.380) were two variables most 265 

associated with clubhead speed. The two other variables included in this model were slower lower 266 

trunk axial rotation velocity at ball impact (β = -0.249) and radial deviation of the wrist at ball 267 

impact (β = 0.176). For the low kick point shaft, radial deviation of the wrist at the top of the 268 

backswing (β = 0.775) and radial deviation of the wrist at ball impact (β = 0.568) were the two 269 

variables most associated with clubhead speed. The other two variables in the model were, a 270 

reduced amount of trunk lateral bending at ball impact (β = -0.486) and greater lower trunk 271 

maximum axial rotation (β = -0.438).  272 

 273 

INSERT TABLE 5 ABOUT HERE 274 

 275 

DISCUSSION AND IMPLICATIONS 276 

This study hypothesised that there would be a difference in golf swing kinematics for highly skilled 277 

golfers hitting with drivers fitted with shafts of modifiable properties. There were two aims of this 278 

study: (a) determine whether trunk and wrist kinematics, and swing parameters and related launch 279 

conditions would differ when using drivers fitted with shafts of different kick point location; and 280 

(b) determine what trunk and wrist kinematics were most strongly associated with clubhead speed 281 

for each of the drivers. While four between-driver differences in swing kinematics were found 282 

(Table 3), it could be reasonably argued that only two of these four variables (trunk axial rotation 283 

velocity at ball impact and the point of wrist release in the downswing) would seem to be 284 

meaningful in a practical sense. This is due to the small magnitude of differences being evident 285 

between-drivers for the other two variables. A discussion of the two findings with practical 286 

application follows. 287 
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 288 

Slower trunk axial rotation velocity at ball impact was reported for the driver fitted with the high 289 

kick point shaft. This may be related to the fact that the high kick point shaft condition in this study 290 

was created by using a heavier (78 g) shaft when compared to the low kick point shaft condition 291 

(56 g). No differences in clubhead speed and ball velocity were observed in the two drivers. The 292 

experimental findings of Haeufle et al. (2012) also revealed no differences in clubhead speed for 293 

two drivers with the same 22 g difference in shaft mass and they speculated that the increase in 294 

shaft mass may cause muscles related to the trunk to contract more slowly. The second between-295 

driver difference of a later wrist release for the driver fitted with the high kick point shaft may be 296 

related to the slower trunk axial rotation velocity. Wrist release was shown to have occurred 4.3 297 

% later in the downswing. A delayed wrist release has been shown to increase clubhead speed 298 

(Sprigings & Neal, 2000; Teu et al., 2006). As no between-driver difference in clubhead speed was 299 

seen, it could be assumed that clubhead speed was generated by more involvement of the wrist 300 

than the trunk for the driver fitted with the high kick point shaft. Alternatively, the early wrist 301 

release for the driver fitted with the low kick point shaft may explain that the faster trunk axial 302 

rotation velocity helped to achieve a similar clubhead speed to the driver fitted with the high kick 303 

point shaft. 304 

 305 

The delayed wrist release for the driver fitted with the high kick point shaft may be explained by 306 

the interaction of the wrist and the heavier, high kick point shaft. White (2006) explained that wrist 307 

release elicits changes in the performance of the shaft during the downswing. It was reported that 308 

shaft properties such as moment of inertia are affected by wrist release. A higher moment of inertia, 309 

increased tip stiffness (Figure 2), as well as an increased amount of bending in the latter stages of 310 
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the downswing have been previously reported for the high kick point shaft when compared to the 311 

low kick point shaft (Joyce et al., 2014). The between-driver difference in wrist release may be 312 

due to participants attempting to optimise the un-loading of the shaft through these properties in 313 

the downswing for optimal swing and related launch parameters. One such difference in launch 314 

parameters seen in this study was that of a lower launch angle for the driver fitted with the high 315 

kick point shaft (Table 4). As implied above, clubhead presentation may be influenced by the 316 

bending of the shaft in the downswing, as well as stiffer shafts (Figure 2) being less lofted at ball 317 

impact (Wishon, 2011; Haeufle et al., 2012; Joyce et al., 2014). 318 

 319 

The regression models generated for each driver resulted in similar (and high) amounts of variance 320 

being explained in clubhead speed (Table 5). Importantly, the most strongly associated variables 321 

with clubhead speed for both models were variables related with the wrist, which is consistent with 322 

previous research (Milburn, 1982; Osis & Stefanyshyn, 2012; Sprigings & Neal, 2000). These 323 

variables were specifically; the release point of the wrists in the downswing, as well as the radial 324 

/ ulnar deviation of the wrist at the top of the backswing and at ball impact. Firstly, participants 325 

who displayed greater radial deviation of the wrist joint (or wrist cocking) at the top of backswing 326 

had greater clubhead speed and this has been supported in previous research (Chu et al., 2010). 327 

Previous studies have shown an increased wrist cock angle at the top of the swing is essential for 328 

accelerating the club in the early stages of the downswing (Chu et al., 2010; Sprigings & Neal, 329 

2000). Shortly after the point of wrist release, wrist velocity rapidly decreases at approximately 330 

90% of downswing (see Figure 4). It has been suggested that wrist torque increases at this point 331 

(reducing wrist velocity), so that the club can release through ball impact and maximise clubhead 332 

speed (Kaneo & Sato, 2000; Osis & Stefanyshyn, 2012). The finding of a small amount of wrist 333 
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cock maintained at ball impact being related to increased clubhead speed is in agreement with 334 

previous studies (Chu et al., 2010; Pickering & Vickers, 1999).  335 

 336 

Variables of lower associations with clubhead speed (Table 5), firstly for the driver fitted with the 337 

high kick point shaft, were lower trunk axial rotational velocity at ball impact. This finding was 338 

previously discussed when a more delayed wrist release was seen for the driver fitted with the high 339 

kick point shaft, as well as slower trunk rotational velocity at ball impact. From what also can be 340 

seen in the regression model for the driver fitted with the high kick point shaft, the delayed release 341 

of the wrists was most likely the cause of clubhead speed, and involvement of the trunk and lower 342 

trunk not as important. Secondly, for the driver fitted with the low kick point shaft, lower 343 

associations with clubhead were seen by reduced right lateral bending and increased lower trunk 344 

maximum axial rotation. Previous recommendations report increasing right lateral bending of the 345 

trunk to facilitate higher launch angles (Gluck, Bendo, & Spivak, 2007) so it is unclear why this 346 

was reported for this study. Increasing lower trunk maximum axial rotation has been previously 347 

reported as being highly associated with clubhead speed (Joyce et al., 2013a). However, for both 348 

regression models, wrist segment variables were the most highly associated with clubhead speed 349 

which conforms to other investigations into the importance of the wrist at producing clubhead 350 

speed (Sprigings & Neal, 2000; Teu et al., 2006). 351 

 352 

There were some limitations of this study. Firstly, isolating the single shaft modification of kick 353 

point was not permitted without other observed differences in mass, swing weighting and flexural 354 

rigidity (Joyce et al., 2014). Although this suggests that other shaft factors may have influenced 355 

differences in swing parameters and related launch conditions than kick point alone, it has 356 
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previously been shown that modifying swingweight has no effect on swing and launch conditions 357 

(Haeufle et al., 2012; Wallace & Hubbell, 2001; Wallace, Otto, & Nevill, 2007). Secondly, there 358 

may have been more practically applicable differences in swing kinematics observed and possibly 359 

different associations with clubhead speed if participants were able to perceive shot outcome 360 

during indoor testing as in the outdoor familiarisation. In staging these limitations however, the 361 

bending, and flexural rigidity profiles of each shaft were known (Joyce et al., 2014). This type of 362 

detail has not been described in previous research examining wrist release and shaft stiffness 363 

(Betzler, 2010; Osis & Stefanyshyn, 2012).  364 

 365 

CONCLUSION 366 

Slower trunk axial rotation velocity and a greater delayed release of the wrist were seen when 367 

using the driver fitted with the high kick point shaft. With no between-driver difference in clubhead 368 

speed, the delayed wrist release may have helped attain a similar clubhead speed to that of the 369 

driver fitted with the low kick point shaft, which showed a faster trunk axial rotation velocity, and 370 

an earlier wrist release. A similar amount of variance was explained for both drivers and similar 371 

variables were shown to be associated with clubhead speed. The results from this study may assist 372 

teaching professionals and club fitters in understanding the interaction between the golfer, and the 373 

club that they are hitting with to maximise golfing performance. Future research which examines 374 

shaft bending profiles during the downswing and player interaction for modifiable driver 375 

properties will also be important for biomechanists and teaching professionals.     376 
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