24,341 research outputs found
Determining cosmic microwave background structure from its peak distribution
We present a new method for time-efficient and accurate extraction of the
power spectrum from future cosmic microwave background (CMB) maps based on
properties of peaks and troughs of the Gaussian CMB sky. We construct a
statistic describing their angular clustering - analogously to galaxies, the
2-point angular correlation function, . We show that for
increasing peak threshold, , the is strongly amplified
and becomes measurable for 1 on angular scales . Its
amplitude at every scale depends uniquely on the CMB temperature correlation
function, , and thus the measured can be uniquely inverted
to obtain and its Legendre transform, the power spectrum of the CMB
field. Because in this method the CMB power spectrum is deduced from high
peaks/troughs of the CMB field, the procedure takes only
operations where is the fraction of pixels with
standard deviations in the map of pixels and is e.g. 0.045 and 0.01 for
=2 and 2.5 respectively. We develop theoretical formalism for the method
and show with detailed simulations, using MAP mission parameters, that this
method allows to determine very accurately the CMB power spectrum from the
upcoming CMB maps in only operations.Comment: To be published in Ap.J. Letters. Minor changes to match the journal
versio
Isoscaling and the high Temperature limit
This study shows that isoscaling, usually studied in nuclear reactions, is a
phenomenon common to all cases of fair sampling. Exact expressions for the
yield ratio and approximate expressions for the isoscaling parameters
and are obtained and compared to experimental results. It is
concluded that nuclear isoscaling is bound to contain a component due to
sampling and, thus, a words of caution is issued to those interested in
extracting information about the nuclear equation of state from isoscaling.Comment: 7 pages, 1 figur
Prompt photon yield and coefficient from gluon fusion induced by magnetic field in heavy-ion collision
We compute the production of prompt photons and the harmonic
coefficient in relativistic heavy-ion collisions induced by gluon fusion in the
presence of an intense magnetic field, during the early stages of the reaction.
The calculations take into account several parameters which are relevant to the
description of the experimental transverse momentum distribution, and elliptic
flow for RHIC and LHC energies. The main imput is the strength of the magnetic
field which varies in magnitude from 1 to 3 times the pion mass squared, and
allows the gluon fusion that otherwise is forbidden in the absence of the
field. The high gluon occupation number and the value of the saturation scale
also play an important role in our calculation, as well as a flow velocity and
geometrical factors. Our results support the idea that the origin of at least
some of the photon excess observed in heavy-ion experiments may arise from
magnetic field induced processes, and gives a good description of the
experimental data.Comment: 6 pages, 2 figures, conference paper from ISMD 201
Constant of Motion for several one-dimensional systems and outlining the problem associated with getting their Hamiltonians
The constants of motion of the following systems are deduced: a relativistic
particle with linear dissipation, a no-relativistic particle with a time
explicitly depending force, a no-relativistic particle with a constant force
and time depending mass, and a relativistic particle under a conservative force
with position depending mass. The problem of getting the Hamiltonian for these
systems is determined by getting the velocity as an explicit function of
position and generalized linear momentum, and this problem can be solved a
first approximation for the first above system.Comment: 15 pages, Te
Adiabatic Charge Pumping through Quantum Dots in the Coulomb Blockade Regime
We investigate the influence of the Coulomb interaction on the adiabatic
pumping current through quantum dots. Using nonequilibrium Green's functions
techniques, we derive a general expression for the current based on the
instantaneous Green's function of the dot. We apply this formula to study the
dependence of the charge pumped per cycle on the time-dependent pumping
potentials. The possibility of charge quantization in the presence of a finite
Coulomb repulsion energy is investigated in the light of recent experiments.Comment: 11 pages, 10 figure
- …