We investigate the influence of the Coulomb interaction on the adiabatic
pumping current through quantum dots. Using nonequilibrium Green's functions
techniques, we derive a general expression for the current based on the
instantaneous Green's function of the dot. We apply this formula to study the
dependence of the charge pumped per cycle on the time-dependent pumping
potentials. The possibility of charge quantization in the presence of a finite
Coulomb repulsion energy is investigated in the light of recent experiments.Comment: 11 pages, 10 figure