655 research outputs found

    On the Observability of Meso- and Macro-scopic Quantum Coherence of Domain Walls in Magnetic Insulators

    Full text link
    Results are presented of a numerical calculation of the tunneling gap for a domain wall moving in the double well potential of a pair of voids in a magnetic insulator. Both symmetric and asymmetric double well potentials are considered. It is found that, even in the absence of dissipation, the prospects for observing quantum coherence on a meso- or macro-scopic scale appears unlikely.Comment: 15 pages, Plain LaTex, UBC TP-93-1

    Phase transition between quantum and classical regimes for the escape rate of a biaxial spin system

    Full text link
    Employing the method of mapping the spin problem onto a particle one, we have derived the particle Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field. Using the Hamiltonian and introducing the parameter p(≡(Umax−E)/(Umax−Umin))p (\equiv (U_{max}-E)/(U_{max}-U_{min})) where UmaxU_{max} (U_{min}) corresponds to the top (bottom) of the potential and EE is the energy of the particle, we have studied the first- or second-order transition around the crossover temperature between thermal and quantum regimes for the escape rate, depending on the anisotropy constant and the external magnetic field. It is shown that the phase boundary separating the first- and second-order transition and its crossover temperature are greatly influenced by the transverse anisotropy constant as well as the transverse or longitudinal magnetic field.Comment: 5 pages + 3 figures, to be published in Phys. Rev.

    Nonadiabatic Landau Zener tunneling in Fe_8 molecular nanomagnets

    Full text link
    The Landau Zener method allows to measure very small tunnel splittings \Delta in molecular clusters Fe_8. The observed oscillations of \Delta as a function of the magnetic field applied along the hard anisotropy axis are explained in terms of topological quantum interference of two tunnel paths of opposite windings. Studies of the temperature dependence of the Landau Zener transition rate P gives access to the topological quantum interference between exited spin levels. The influence of nuclear spins is demonstrated by comparing P of the standard Fe_8 sample with two isotopically substituted samples. The need of a generalized Landau Zener transition rate theory is shown.Comment: 5 pages, 6 figure

    Instanton picture of the spin tunneling in the Lipkin model

    Full text link
    A consistent theory of the ground state energy and its splitting due to the process of tunneling for the Lipkin model is presented. For the functional integral in terms of the spin coherent states for the partition function of the model we accurately calculate the trivial and the instanton saddle point contributions. We show that such calculation has to be perfomed very accurately taking into account the discrete nature of the functional integral. Such accurate consideration leads to finite corrections to a naive continous consideration. We present comparison with numerical calculation of the ground state energy and the tunneling splitting and with the results obtained by the quasiclassical method and get excellent agreement.Comment: REVTEX, 32 pages, 3 figure

    The Relationship Between Minority Business Enterprises and Corporate Purchasing Personnel: Perceptions from Both Sides of the Table

    Get PDF
    This paper addresses the nature of the difficulties MBEs face when conducting business with large companies through MBE purchasing programs. Data collected from MBEs and purchasing personnel were analyzed with logistic regression to demonstrate that MBEs and their corporate purchasing counterparts have different perceptions across human, environmental, and organizational dimensions of transaction cost economics. These differences help to explain the problems: (1) that MBEs have in selling to large companies and the problems that MBEs and purchasing personnel have in implementing MBE purchasing programs; (2) of reaching agreement in the marketplace; and, (3) of collectively pursuing the economic development of the minority business community. We offer recommendations for improving the relationship between these parties

    Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules

    Full text link
    We argue that to explain recent resonant tunneling experiments on crystals of Mn12_{12} and Fe8_8, particularly in the low-T limit, one must invoke dynamic nuclear spin and dipolar interactions. We show the low-TT, short-time relaxation will then have a t/τ\sqrt{t/\tau} form, where τ\tau depends on the nuclear T2T_2, on the tunneling matrix element Δ10\Delta_{10} between the two lowest levels, and on the initial distribution of internal fields in the sample, which depends very strongly on sample shape. The results are directly applicable to the Fe8Fe_8 system. We also give some results for the long-time relaxation.Comment: 4 pages, 3 PostScript figures, LaTe

    Magnon Exchange Mechanism of Ferromagnetic Superconductivity

    Full text link
    The magnon exchange mechanism of ferromagnetic superconductivity (FM-superconductivity) was developed to explain in a natural way the fact that the superconductivity in UGe2UGe_2, ZrZn2ZrZn_2 and URhGeURhGe is confined to the ferromagnetic phase.The order parameter is a spin anti-parallel component of a spin-1 triplet with zero spin projection. The transverse spin fluctuations are pair forming and the longitudinal ones are pair breaking. In the present paper, a superconducting solution, based on the magnon exchange mechanism, is obtained which closely matches the experiments with ZrZn2ZrZn_2 and URhGeURhGe. The onset of superconductivity leads to the appearance of complicated Fermi surfaces in the spin up and spin down momentum distribution functions. Each of them consist of two pieces, but they are simple-connected and can be made very small by varying the microscopic parameters. As a result, it is obtained that the specific heat depends on the temperature linearly, at low temperature, and the coefficient γ=CT\gamma=\frac {C}{T} is smaller in the superconducting phase than in the ferromagnetic one. The absence of a quantum transition from ferromagnetism to ferromagnetic superconductivity in a weak ferromagnets ZrZn2ZrZn_2 and URhGeURhGe is explained accounting for the contribution of magnon self-interaction to the spin fluctuations' parameters. It is shown that in the presence of an external magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.

    Quantum Phase Interference for Quantum Tunneling in Spin Systems

    Get PDF
    The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspondence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable pha se of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is significant for quantum phase interference is discovered with the quantum theory of spin systems besides the known phase obtained with the semiclassical treatment of spin. We also show the energ y dependence of the effect and obtain the tunneling splitting at excited states with the help of periodic instantons.Comment: 19 pages, no figure, to appear in PR

    Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac

    Full text link
    The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rate Γ\Gamma with dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin (WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle point and give an extended account of a previous study of crossover region. We deal with two dangerous fluctuation modes whose contribution can't be calculated by the steepest descent method and show that higher order couplings between the two dangerous modes need to be taken into considerations. At last the crossover from thermal hopping to quantum tunneling in the molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure

    Ward identity and optical-conductivity sum rule in the d-density wave state

    Get PDF
    We consider the role of the Ward identity in dealing with the transport properties of an interacting system forming a d-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled approximation for the current-current correlation function which allows us also to determine analytically the corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting model and in the effective mean-field Hamiltonian, we propose a non-standard low-energy sum-rule for this system. We also discuss the possible applicability of these results for the description of cuprate superconductors in the pseudogap regime.Comment: Revised version, accepted for publication in Phys. Rev.
    • …
    corecore