210 research outputs found

    Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system

    Full text link
    We describe the asymptotic behavior as time goes to infinity of solutions of the 2 dimensional corotational wave map system and of solutions to the 4 dimensional, radially symmetric Yang-Mills equation, in the critical energy space, with data of energy smaller than or equal to a harmonic map of minimal energy. An alternative holds: either the data is the harmonic map and the soltuion is constant in time, or the solution scatters in infinite time

    Self-similar dynamics for the modified Korteweg-de Vries equation

    Get PDF
    We prove a local well posedness result for the modified Korteweg-de Vries equa- tion in a critical space designed so that is contains self-similar solutions. As a consequence, we can study the flow of this equation around self-similar solutions: in particular, we give an as- ymptotic description of small solutions as t → +∞ and construct solutions with a prescribed blow up behavior as t → 0

    Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation

    Get PDF
    We give the asymptotics of the Fourier transform of self-similar solutions for the modified Korteweg-de Vries equation. In the defocussing case, the self-similar profiles are solutions to the Painlevé II equation; although they were extensively studied in physical space, no result to our knowledge describe their behavior in Fourier space. These Fourier asymptotics are crucial in the study of stability properties of the self-similar solutions for the modified Korteweg-de Vries flow. Our result is obtained through a fixed point argument in a weighted W1,∞ space around a carefully chosen, two term ansatz, and we are able to relate the constants involved in the description in Fourier space with those of the description in physical space

    Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation

    Get PDF
    We give the asymptotics of the Fourier transform of self-similar solutions to the modified Korteweg-de Vries equation, through a fixed point argument in weighted W1,W^{1,\infty} around a carefully chosen, two term ansatz. Such knowledge is crucial in the study of stability properties of the self-similar solutions for the modified Korteweg-de Vries flow. In the defocusing case, the self-similar profiles are solutions to the PainlevéII equation. Although they were extensively studied in physical space, no result to our knowledge describe their behavior in Fourier space. We are able to relate the constants involved in the description in Fourier space with those involved in the description in physical space

    Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    No full text
    International audienceIn order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using " Energy Pumping " also named " Targeted Energy Transfer ". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its center having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system

    Stable self-similar blow-up dynamics for slightly L2L^2-supercritical generalized KdV equations

    Get PDF
    In this paper we consider the slightly L2L^2-supercritical gKdV equations tu+(uxx+uup1)x=0\partial_t u+(u_{xx}+u|u|^{p-1})_x=0, with the nonlinearity 5<p<5+ε5<p<5+\varepsilon and 0<ε10<\varepsilon\ll 1 . We will prove the existence and stability of a blow-up dynamic with self-similar blow-up rate in the energy space H1H^1 and give a specific description of the formation of the singularity near the blow-up time.Comment: 38 page

    Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems

    Get PDF
    At small layer separations, the ground state of a nu=1 bilayer quantum Hall system exhibits spontaneous interlayer phase coherence and has a charged-excitation gap E_g. The evolution of this state with increasing layer separation d has been a matter of controversy. In this letter we report on small system exact diagonalization calculations which suggest that a single phase transition, likely of first order, separates coherent incompressible (E_g >0) states with strong interlayer correlations from incoherent compressible states with weak interlayer correlations. We find a dependence of the phase boundary on d and interlayer tunneling amplitude that is in very good agreement with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Skyrmion Dynamics and NMR Line Shapes in QHE Ferromagnets

    Full text link
    The low energy charged excitations in quantum Hall ferromagnets are topological defects in the spin orientation known as skyrmions. Recent experimental studies on nuclear magnetic resonance spectral line shapes in quantum well heterostructures show a transition from a motionally narrowed to a broader `frozen' line shape as the temperature is lowered at fixed filling factor. We present a skyrmion diffusion model that describes the experimental observations qualitatively and shows a time scale of 50μsec\sim 50 \mu{\rm sec} for the transport relaxation time of the skyrmions. The transition is characterized by an intermediate time regime that we demonstrate is weakly sensitive to the dynamics of the charged spin texture excitations and the sub-band electronic wave functions within our model. We also show that the spectral line shape is very sensitive to the nuclear polarization profile along the z-axis obtained through the optical pumping technique.Comment: 6 pages, 4 figure

    Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule

    Full text link
    Using the method of quantum-defect theory, we calculate the ultralong-range molecular vibrational states near the dissociation threshold of a diatomic molecular potential which asymptotically varies as 1/R3-1/R^3. The properties of these states are of considerable interest as they can be formed by photoassociation (PA) of two ground state atoms. The Franck-Condon overlap integrals between the harmonically trapped atom-pair states and the ultralong-range molecular vibrational states are estimated and compared with their values for a pair of untrapped free atoms in the low-energy scattering state. We find that the binding between a pair of ground-state atoms by a harmonic trap has significant effect on the Franck-Condon integrals and thus can be used to influence PA. Trap-induced binding between two ground-state atoms may facilitate coherent PA dynamics between the two atoms and the photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003
    corecore