15 research outputs found

    A novel hydrogel based on renewable materials for agricultural application

    Get PDF
    This study details the design and characterization of a new, biodegradable, and renewable whey/cellulose-based hydrogel (i.e., agricultural hydrogel). This was formulated from cellulose derivatives (carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC)) and acid whey cross-linked with citric acid, with the aim to obtain an agricultural product with a high swelling capacity to uphold the quality of soil and conserve water resources. With regard to the swelling behaviour of the prepared hydrogels, the authors initially assessed the swelling ratio and capacity for water uptake. Evaluating the chemical structure of the hydrogel and its thermal and viscoelastic properties involved performing Fourier transform infrared spectroscopy, differential scanning colorimetry, thermal gravimetric analysis, and rheological measurement of the hydrogel films. According to preliminary results, sufficient swelling capacity and stiffness were observed in a hydrogel prepared with 3% CMC and HEC, cross-linked with 5% citric acid. Moreover, the kinetics of water uptake revealed a promising capacity that was sustainable after 5 drying and swelling cycles. The results confirmed that the stability of the hydrogel was enhanced by the presence of the citric acid. As a consequence, it is necessary to utilize an appropriate cross-linking concentration and abide by certain conditions to ensure the swelling properties of the prepared hydrogel are sufficient. Further investigation of the topic, especially in relation to applications in soil, could confirm if the whey-cellulose-based hydrogel is actually suitable for agricultural use, thereby contributing to the advancement of sustainable arable farming. © 2020 Silvie Durpekova et al.Ministry of Agriculture of the Czech RepublicMinistry of Agriculture, Czech Republic [QK1910392]; Czech Ministry of Education, Youth and SportsMinistry of Education, Youth & Sports - Czech Republic [LO1504

    Effect of an antioxidant based on red beetroot extract on the abiotic stability of polylactide and polycaprolactone

    Get PDF
    This study investigated the effect of natural antioxidants inherent to beetroot (Beta vulgaris var. Vulgaris) on the ageing of environmentally friendly plastics. Certain properties were examined in this context, comprising thermal, mechanical, and morphological properties. A visual evaluation of relevant changes in the given polymers (polylactide and polycaprolactone) was conducted during an ageing test in a UV chamber (45◦C, 70% humidity) for 720 h. The films were prepared by a casting process, in which samples with the extract of beetroot were additionally incorporated in a common filler (bentonite), this serving as a carrier for the extract. The results showed the effect of the incorporated antioxidant, which was added to stabilize the biodegradable films. Its efficiency during the ageing test in the polymers tended to exceed or be comparable to that of the reference sample. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Ministry of Education, Youth, and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [RP/CPS/2020/002]; Internal Grant Agency of TBU in Zlin [IGA/CPS/2020/002]IGA/CPS/2020/002; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/00

    Polylactide/polyvinylalcohol-based porous bioscaffold loaded with gentamicin for wound dressing applications

    Get PDF
    This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80◦ C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg ) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Ministry of Education, Youth, and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [RP/CPS/2020/002]; Internal Grant Agency of TBU in Zlin [IGA/CPS/2020/002]IGA/CPS/2020/002; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/00

    Design and fabrication of electrospun PLA-based silica-modified composite nanofibers with antibacterial properties for perspective wound treatment

    Get PDF
    The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.TBU in Zlin, (IGA/CPS/2023/002); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (RP/CPS/2022/002, RP/CPS/2022/007)Ministry of Education, Youth and Sports of the Czech Republic [RP/CPS/2022/002, RP/CPS/2022/007]; Internal Grant Agency of TBU in Zlin [IGA/CPS/2023/002

    Nanoparticle-based rifampicin delivery system development

    Get PDF
    The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by H-1 NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.Ministry of Education, Youth and Sport of the Czech Republic-DKRVO [RP/CPS/2020/005

    Analýza rozvoje soukromého podnikání v okresu Kroměříž

    No full text
    PrezenčníNeuvedenoNeuveden

    Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System

    Get PDF
    Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN

    Composite based on PLA with improved shape stability under high-temperature conditions

    No full text
    Composite materials based on PLA have been studied in depth for many applications, including food packaging. This manuscript describes extensive research conducted on a biodegradable polymer (PLA), inorganic filler (CaCO3), and polyester-based plasticizer (PEP, based on a copolymer of low-molecular-weight PLA and PEG) prepared under semi-industrial conditions, as applicable for the packaging of hot food. The properties of the composite were achieved by post-processing annealing, notably its thermal stability, thereby permitting contact of the material with hot food. The manner of processing was deemed suitable for deployment at an industrial scale, moreover, the thermal stability of the final product endured, evidencing its applicability for such packaging. Change in the morphology of the structure of the composite material depended on the composition and annealing process, as detailed herein. The effect of the post-production thermal annealing on the molecular weight of samples was studied using the gel permeation chromatography. The thermal properties of the composites were investigated by differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The crystallinity was assessed using X-ray diffraction technique, while mechanical behavior was tested in relation to the given tensile properties, shape stability at high temperature, and permeability by the transmission rates of gas/water vapor.Technology Agency of the Czech Republic, TACR: TH02020836; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: 8JPL19031, RP/CPS/2022/00

    Polylactide/Polyvinylalcohol-Based Porous Bioscaffold Loaded with Gentamicin for Wound Dressing Applications

    No full text
    This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80 °C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release

    Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer

    No full text
    This study investigates the optimal composition of two additives to accelerate the degradation mechanism of polylactide (PLA) material under different conditions: abiotic hydrolysis, biotic degradation and composting conditions at the laboratory scale level. The composites were prepared from a PLA matrix with a synthesised additive based on a copolymer of polylactic acid and polyacrylic acid (PLA-g-PAA) with inorganic filler halloysite (HNT). The aim was to design a composite material with improved physical and chemical properties and accelerated degradability than conventional PLA, which would apply to products incapable of mechanical or chemical recycling. The addition of HNT alone helped increase Young's modulus by 15–25 % but worsened the elongation, which was compensated by adding a second additive in the composite. The experimental data from abiotic hydrolysis and biodegradation were processed using appropriate kinetic models. Abiotic hydrolysis was recorded by changes in molecular weights and released carbon (GPC, TOC-L), confirming its acceleration in PLA/5H/20PLA-g-PAA composites by a faster release of ester bonds in PLA. A similar effect was observed during biotic degradation using the measured CO2 content (GC instrument), which was demonstrated by accelerating from 0.0238 day[sbnd]1 for neat PLA to 0.0397 day−1. In composting conditions, the course was the fastest up to 45 days; samples containing additives were disintegrated by 94.1–99.8 %, without depreciating the properties of compost and plant germination. © 2022 Elsevier LtdRP/CPS/2022/002; IGA/CPS/2021/002; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: 8JPL1903
    corecore