Composite based on PLA with improved shape stability under high-temperature conditions

Abstract

Composite materials based on PLA have been studied in depth for many applications, including food packaging. This manuscript describes extensive research conducted on a biodegradable polymer (PLA), inorganic filler (CaCO3), and polyester-based plasticizer (PEP, based on a copolymer of low-molecular-weight PLA and PEG) prepared under semi-industrial conditions, as applicable for the packaging of hot food. The properties of the composite were achieved by post-processing annealing, notably its thermal stability, thereby permitting contact of the material with hot food. The manner of processing was deemed suitable for deployment at an industrial scale, moreover, the thermal stability of the final product endured, evidencing its applicability for such packaging. Change in the morphology of the structure of the composite material depended on the composition and annealing process, as detailed herein. The effect of the post-production thermal annealing on the molecular weight of samples was studied using the gel permeation chromatography. The thermal properties of the composites were investigated by differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The crystallinity was assessed using X-ray diffraction technique, while mechanical behavior was tested in relation to the given tensile properties, shape stability at high temperature, and permeability by the transmission rates of gas/water vapor.Technology Agency of the Czech Republic, TACR: TH02020836; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: 8JPL19031, RP/CPS/2022/00

    Similar works