10 research outputs found

    Biosynthesis of soluble carotenoid holoproteins in Escherichia coli.

    No full text
    International audienceCarotenoids are widely distributed natural pigments that are excellent antioxidants acting in photoprotection. They are typically solubilized in membranes or attached to proteins. In cyanobacteria, the photoactive soluble Orange Carotenoid Protein (OCP) is involved in photoprotective mechanisms as a highly active singlet oxygen and excitation energy quencher. Here we describe a method for producing large amounts of holo-OCP in E.coli. The six different genes involved in the synthesis of holo-OCP were introduced into E. coli using three different plasmids. The choice of promoters and the order of gene induction were important: the induction of genes involved in carotenoid synthesis must precede the induction of the ocp gene in order to obtain holo-OCPs. Active holo-OCPs with primary structures derived from several cyanobacterial strains and containing different carotenoids were isolated. This approach for rapid heterologous synthesis of large quantities of carotenoproteins is a fundamental advance in the production of antioxidants of great interest to the pharmaceutical and cosmetic industries

    Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria.

    No full text
    International audienceA quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP

    Regulation of Orange Carotenoid Protein Activity in Cyanobacterial Photoprotection.

    No full text
    International audiencePlants, algae, and cyanobacteria have developed mechanisms to decrease the energy arriving at reaction centers to protect themselves from high irradiance. In cyanobacteria, the photoactive Orange Carotenoid Protein (OCP) and the Fluorescence Recovery Protein are essential elements in this mechanism. Absorption of strong blue-green light by the OCP induces carotenoid and protein conformational changes converting the orange (inactive) OCP into a red (active) OCP. Only the red orange carotenoid protein (OCP(r)) is able to bind to phycobilisomes, the cyanobacterial antenna, and to quench excess energy. In this work, we have constructed and characterized several OCP mutants and focused on the role of the OCP N-terminal arm in photoactivation and excitation energy dissipation. The N-terminal arm largely stabilizes the closed orange OCP structure by interacting with its C-terminal domain. This avoids photoactivation at low irradiance. In addition, it slows the OCP detachment from phycobilisomes by hindering fluorescence recovery protein interaction with bound OCP(r). This maintains thermal dissipation of excess energy for a longer time. Pro-22, at the beginning of the N-terminal arm, has a key role in the correct positioning of the arm in OCP(r), enabling strong OCP binding to phycobilisomes, but is not essential for photoactivation. Our results also show that the opening of the OCP during photoactivation is caused by the movement of the C-terminal domain with respect to the N-terminal domain and the N-terminal arm

    The paralogs to the C-terminal domain of the cyanobacterial OCP are carotenoid donors to HCPs

    No full text
    The photoactive Orange Carotenoid Protein photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain (NTD) is the active part of the protein and the C-terminal domain (CTD) regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins or HCPs), paralogs of NTD-OCP, were described. Bioinformatics studies also revealed the existence of genes coding for homologs of CTD. Here, we show that the latter genes encode carotenoid proteins (CTDHs). This family of proteins contains two subgroups with distinct characteristics. One CTDH of each clade was further characterized and proved to be very good singlet oxygen quenchers. When synthesized in E. coli or Synechocystis PCC 6803, CTDHs form dimers that share a carotenoid molecule and are able to transfer their carotenoid to apo-HCPs and apo-OCP. The CTDHs from clade 2 have a cysteine in position 103. A disulfide bond is easily formed between the monomers of the dimer preventing carotenoid transfer. This suggests that the transfer of the carotenoid could be redox regulated in clade 2 CTDH. We also demonstrate here that apo-OCPs and apo CTDHs are able to take the carotenoid directly from membranes, while HCPs are unable. HCPs need the presence of CTDH to become holo-proteins. We propose that in cyanobacteria the CTDHs are carotenoid donors to HCPs

    Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord

    No full text
    International audienceDorsal spinal neurogenesis is orchestrated by the combined action of signals secreted from the roof plate organizer and a downstream transcriptional cascade. Within this cascade, Msx1 and Msx2, two homeodomain transcription factors (TFs), are induced earlier than bHLH neuralizing TFs. Whereas bHLH TFs have been shown to specify neuronal cell fate, the function of Msx genes remains poorly defined. We describe dramatic alterations of neuronal patterning in Msx1/Msx2 double-mutant mouse embryos. The most dorsal spinal progenitor pool fails to express the bHLH neuralizing TF Atoh1, which results in a lack of Lhx2-positive and Barhl2-positive dI1 interneurons. Neurog1 and Ascl1 expression territories are dorsalized, leading to ectopic dorsal differentiation of dI2 and dI3 interneurons. In proportion, the amount of Neurog1-expressing progenitors appears unaffected, whereas the number of Ascl1-positive cells is increased. These defects occur while BMP signaling is still active in the Msx1/Msx2 mutant embryos. Cell lineage analysis and co-immunolabeling demonstrate that Atoh1-positive cells derive from progenitors expressing both Msx1 and Msx2. In vitro, Msx1 and Msx2 proteins activate Atoh1 transcription by specifically interacting with several homeodomain binding sites in the Atoh1 3' enhancer. In vivo, Msx1 and Msx2 are required for Atoh1 3' enhancer activity and ChIP experiments confirm Msx1 binding to this regulatory sequence. These data support a novel function of Msx1 and Msx2 as transcriptional activators. Our study provides new insights into the transcriptional control of spinal cord patterning by BMP signaling, with Msx1 and Msx2 acting upstream of Atoh1

    Different functions of the paralogs to the N-terminal domain of the Orange Carotenoid Protein in the cyanobacterium Anabaena sp. PCC 7120

    No full text
    International audienceThe photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins

    PHOTOSYNTHESIS. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection.

    No full text
    International audiencePigment-protein and pigment-pigment interactions are of fundamental importance to the light-harvesting and photoprotective functions essential to oxygenic photosynthesis. The orange carotenoid protein (OCP) functions as both a sensor of light and effector of photoprotective energy dissipation in cyanobacteria. We report the atomic-resolution structure of an active form of the OCP consisting of the N-terminal domain and a single noncovalently bound carotenoid pigment. The crystal structure, combined with additional solution-state structural data, reveals that OCP photoactivation is accompanied by a 12 angstrom translocation of the pigment within the protein and a reconfiguration of carotenoid-protein interactions. Our results identify the origin of the photochromic changes in the OCP triggered by light and reveal the structural determinants required for interaction with the light-harvesting antenna during photoprotection
    corecore