5 research outputs found

    Differential scanning calorimetry of plasma in glioblastoma: toward a new prognostic / monitoring tool

    No full text
    International audienceGlioblastoma is the most frequent and aggressive primary brain tumor in adults. Recently, a growing number of studies have shown that denaturation profile of plasma samples obtained by differential scanning calorimetry (DSC) can represent a signature of a disease. In this study, we analyzed for the first time the DSC denaturation profiles of the plasma from patients with recurrent glioblastoma (n=17). Comparison to the one of healthy individuals (n=10) and to already described profiles in others cancer showed clear differences suggesting that this DSC profile may constitute a signature of glioblastoma. Parameters extracted from these profiles were used for cluster analysis which revealed the existence of glioblastoma profile subgroups which correlated with prognostic factors. Moreover, we showed that the presence of circulating bevacizumab and carmustine did not alter this calorimetric signature of the disease, indicating that an evolution of the profile could be followed without being masked by ongoing systemic treatment. Thus, our results constitute a very promising proof of principle that a specific calorimetric profile could be detected in the plasma of glioblastoma patients. Moreover, we believe that our findings point to a potential easy-to-use non-invasive monitoring tool for glioblastoma patients

    Integrated clustering of multiple immune marker trajectories reveals different immunotypes in severely injured patients

    No full text
    International audienceAbstract Background The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. Methods We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. Results We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. Conclusion Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets. Graphical Abstrac
    corecore