9 research outputs found

    Theoretical isotope shifts in neutral barium

    Full text link
    The present work deals with a set of problems in isotope shifts of neutral barium spectral lines. Some well known transitions (6s2 1S0−6s6p 1,3P1o6s^2~^1S_0-6s6p~^{1,3}P^o_1 and 6s2 1S0−6p2 3P06s^2~^1S_0-6p^2~^3P_0) are first investigated. Values of the changes in the nuclear mean-square charge radius are deduced from the available experimental isotope shifts using our ab initio electronic factors. The three sets {ή⟹r2⟩A,Aâ€Č}\{ \delta\langle r^2\rangle^{A,A'}\} obtained from these lines are consistent with each other. The combination of the available nuclear mean-square radii with our electronic factors for the 6s5d 3D1,2−6s6p 1P1o6s5d~^3D_{1,2} -6s6p~^{1}P^o_1 transitions produces isotope shift values in conflict with the laser spectroscopy measurements of Dammalapati et al. (Eur. Phys. J. D 53, 1 (2009))

    Mass- and field-shift isotope parameters for the 2s−2p2s - 2p resonance doublet of lithium-like ions

    Full text link
    It was recently shown that dielectronic recombination measurements can be used for accurately inferring changes in the nuclear mean-square charge radii of highly-charged lithium-like neodymium [Brandau et al., Phys. Rev. Lett. 100 073201 (2008)]. To make use of this method to derive information about the nuclear charge distribution for other elements and isotopes, accurate electronic isotope shift parameters are required. In this work, we calculate and discuss the relativistic mass- and field-shift factors for the two 2s2S1/2−2p2P1/2,3/2o2s ^{2}S_{1/2} - 2p ^{2}P^{o}_{1/2,3/2} transitions along the lithium isoelectronic sequence. Based on the multiconfiguration Dirac-Hartree-Fock method, the electron correlation and the Breit interaction are taken into account systematically. The analysis of the isotope shifts for these two transitions along the isoelectronic sequence demonstrates the importance and competition between the mass shifts and the field shifts.Comment: Accepted by Phys. Rev.

    Calculs ab initio relativistes de déplacements isotopiques

    No full text
    Quand les effets de la masse finie du noyau et de la distribution de charge spatiale sont pris en compte dans l’Hamiltonien dĂ©crivant un systĂšme atomique, les isotopes d’un Ă©lĂ©ment, caractĂ©risĂ©s par le mĂȘme nombre de protons mais un nombre diffĂ©rent de neutrons, ont des niveaux d’énergie Ă©lectronique diffĂ©rents. Le dĂ©placement entre les niveaux d’énergie (pour un mĂȘme Ă©tat quantique) de deux isotopes diffĂ©rents est appelĂ© le dĂ©placement isotopique de niveau. De maniĂšre gĂ©nĂ©rale, on peut distinguer les dĂ©placements isotopiques de champ (field shift) et les dĂ©placements isotopiques de masse (mass shift). Pour les systĂšmes Ă  plus d’un Ă©lectron, le specific mass shift (SMS) apparaĂźt. GrĂące Ă  sa faible pondĂ©ration, le paramĂštre SMS peut ĂȘtre traitĂ© comme une perturbation de l’Hamiltonien ;son estimation fait appel aux intĂ©grales de Vinti [5].Dans un contexte relativiste, les programmes grasp2K [2] et mcdf-gme [1] permettent de rĂ©soudre les Ă©quations de Dirac-Fock associĂ©es Ă  un Ă©tat multiconfigurationnel et d’en fournir l’énergie ainsi que la reprĂ©sentation numĂ©rique des orbitales monoĂ©lectroniques. Nous avons crĂ©Ă© et introduit dans le programme mcdf-gme une sous-routine capable d’estimer les paramĂštres de masse et de champ Ă  partir des fonctions d’onde multiconfigurationnelles. Pour le programme GRASP2K, un module indĂ©pendant Ă  Ă©tĂ© crĂ©Ă©. Par ailleurs, un opĂ©rateur plus complet impliquant des corrections en αZ, a Ă©tĂ© dĂ©rivĂ© par Shabaev [4] et, de maniĂšre indĂ©pendante, par Palmer [3]. Nous avons dĂ©duit la forme tensorielle de cet opĂ©rateur et avons Ă©galement implĂ©mentĂ© dans les programmes citĂ©s ci-dessus le calcul de ses Ă©lĂ©ments de matrice.GrĂące Ă  ces outils nous avons pu Ă©tudier la dĂ©tĂ©rioration de l’opĂ©rateur d’énergie cinĂ©tique pour estimer le normal mass shift et travailler divers systĂšmes comme le lithium neutre et sa sĂ©quence isoĂ©lectronique. Par la suite nous avons Ă©galement travaillĂ© sur les sĂ©quences isoĂ©lectroniques du bore, du bĂ©ryllium, du carbone et de l’azote. Enfin, certains effets isotopiques ont Ă©tĂ© Ă©tudiĂ©s pour plusieurs transitions dans le baryum neutre.Bibliographie[1] J. P. Desclaux. A relativistic multiconfiguration Dirac-Fock package. In E. Clementi, editor, Methods and Techniques in Computational Chemistry - vol. A :Small Systems of METTEC, page 253. STEF, Cagliari, 1993.[2] P. Jönsson, X. He, C. Froese Fischer and I. P. Grant. The GRASP2K relativistic atomic structure package. Comput. Phys. Commun. 177 :597–622, 2007.[3] C. W. P. Palmer. Reformulation of the theory of the mass shift. J. Phys. B :At. Mol. Phys. 20 :5987–5996, 1987.[4] V. M. Shabaev and A. N. Artemyev. Relativistic nuclear recoil corrections to the energy levels of multicharged ions. J. Phys. B :At. Mol. Phys. 27 :1307–1314, 1994.[5] J. P. Vinti. Isotope shift in magnesium. Phys. Rev. 56 :1120–1132, 1939.Doctorat en Sciences de l'ingĂ©nieurinfo:eu-repo/semantics/nonPublishe

    Relativistic calculations on isotope shifts in barium

    No full text
    When the effects of the finite mass of the nucleus and the spatial nuclear charge distribution are taken into account in the Hamiltonian describing an atomic system, the isotopes of an element have different electronic energy levels. In the present work, we are investigating these mass and field effects in neutral barium, hoping to shed some light on the surprising observed deviation of isotope shifts from their expected behavior for odd isotopes in an analysis based on King-plots.info:eu-repo/semantics/publishe

    Relativistic ab initio calculations of isotope shifts

    No full text
    info:eu-repo/semantics/nonPublishe

    Ris3: A program for relativistic isotope shift calculations

    No full text
    An atomic spectral line is characteristic of the element producing the spectrum. The line also depends on the isotope. The program ris3 (Relativistic Isotope Shift) calculates the electron density at the origin and the normal and specific mass shift parameters. Combining these electronic quantities with available nuclear data, isotope-dependent energy level shifts are determined. © 2013 Elsevier B.V. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    On the breakdown of the Dirac kinetic energy operator for estimating normal mass shifts

    No full text
    The Dirac kinetic energy (DKE) form of the normal mass shift operator (me/M ∑i=1N Ti), which is an approximation of the (1/2M ∑i=1N pi 2) operator built on the relativistic electron momenta, is widely used in relativistic atomic structure calculations. In the present paper, we illustrate the progressive breakdown of the Dirac kinetic energy form relatively to the momentum form when increasing the nuclear charge along the lithium isoelectronic sequence. Both forms are incorrect in the relativistic case but the DKE operator provides expectation values that are closer to the results obtained with the more complete relativistic recoil operator. © EDP Sciences, SocietĂ  Italiana di Fisica, Springer-Verlag 2012.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Hyperfine structures and Landé gJ-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    No full text
    Energy levels, hyperfine interaction constants, and Landé gJ-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core-valence, and core-core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature. © 2014 Elsevier Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore