17 research outputs found

    PRIAM : Technologie de rupture pour une production contrôlée et intensifiée de microalgues. Etude de l'hydrodynamique en vue d'éviter le développement de biofilm dans de tels systèmes intensifiés

    Get PDF
    International audienceDepuis quelques années, les microorganismes photosynthétiques (microalgues et cyanobactéries) offrent un potentiel de valorisation et de développement important dans de nombreux domaines d'applications (cosmétique, pharmaceutique [1], [2], nutraceutique, complément alimentaire, énergie, captage de CO 2 , etc.). Cependant, leur production requiert un développement de technologies spécifiques fournissant les conditions nécessaires à la croissance photosynthétique. De nombreuses avancées ont été réalisées ces dernières années dans l'ingénierie de tels systèmes, permettant de proposer des solutions innovantes pour la conception de technologies de rupture adaptées à la production industrielle contrôlée et intensifiée de microalgues [3], [4]. C'est dans ce contexte que PRIAM a été développé pour atteindre des performances exceptionnelles par rapport aux systèmes existants (Tableau 1). PRIAM est un photobioréacteur plan avec illumination volumétrique interne (panneau double face lumineux Lightex®). Il a été conçu en intégrant les dernières avancées scientifiques dans l'ingénierie des photobioréacteurs, tout en répondant aux attentes spécifiques d'un développement biotechnologique des microalgues, nécessitant des unités de production modulaires (10 à 1000 L) à productivité constante et satisfaisant de fortes contraintes de contrôle et de robustesse. Le concept de la technologie PRIAM qui vise la production contrôlée de microorganismes photosynthétiques, tout en ayant une productivité élevée (4 kg/m 3 /jour de biomasse sèche) est particulièrement adapté à la production industrielle de molécules à haute valeur ajoutée. Ce développement a débouché sur la création de la start-up Algolight, qui cible les applications du domaine de la santé humaine, secteur ayant besoin de produire des microalgues de manière contrôlée et intensifiée. Dans ce type de photobioréacteur intensifié, l'un des verrous majeurs est l'hydrodynamique, qui doit être optimisé en raison du confinement et de l'augmentation de la viscosité de la culture à haute concentration cellulaire, viscosité qui peut avoir un comportement non newtonien pour certaines souches de microalgues comme c'est le cas de Porphyridium cruentum (Fig. 1); le transfert gaz-liquide doit être maitrisé pour que le dioxyde de carbone ne soit pas limitant pour la croissance des microorganismes photosynthétiques et pour qu'il n'y ait pas d'accumulation de dioxygène [6] ; ainsi que de formation de biofilm. Cette présentation a pour objectif de présenter cette technologie de rupture et d'apporter des réponses aux problématiques d'hydrodynamique en optimisant notamment l'injection de gaz sur une solution modèle se rapprochant de Porphyridium et des transferts gaz-liquide pour l'aspect biofilm en travaillant en conditions réelles

    PRIAM : Technologie de rupture pour une production contrôlée et intensifiée de microalgues. Etude de l'hydrodynamique en vue d'éviter le développement de biofilm dans de tels systèmes intensifiés

    Get PDF
    International audienceDepuis quelques années, les microorganismes photosynthétiques (microalgues et cyanobactéries) offrent un potentiel de valorisation et de développement important dans de nombreux domaines d'applications (cosmétique, pharmaceutique [1], [2], nutraceutique, complément alimentaire, énergie, captage de CO 2 , etc.). Cependant, leur production requiert un développement de technologies spécifiques fournissant les conditions nécessaires à la croissance photosynthétique. De nombreuses avancées ont été réalisées ces dernières années dans l'ingénierie de tels systèmes, permettant de proposer des solutions innovantes pour la conception de technologies de rupture adaptées à la production industrielle contrôlée et intensifiée de microalgues [3], [4]. C'est dans ce contexte que PRIAM a été développé pour atteindre des performances exceptionnelles par rapport aux systèmes existants (Tableau 1). PRIAM est un photobioréacteur plan avec illumination volumétrique interne (panneau double face lumineux Lightex®). Il a été conçu en intégrant les dernières avancées scientifiques dans l'ingénierie des photobioréacteurs, tout en répondant aux attentes spécifiques d'un développement biotechnologique des microalgues, nécessitant des unités de production modulaires (10 à 1000 L) à productivité constante et satisfaisant de fortes contraintes de contrôle et de robustesse. Le concept de la technologie PRIAM qui vise la production contrôlée de microorganismes photosynthétiques, tout en ayant une productivité élevée (4 kg/m 3 /jour de biomasse sèche) est particulièrement adapté à la production industrielle de molécules à haute valeur ajoutée. Ce développement a débouché sur la création de la start-up Algolight, qui cible les applications du domaine de la santé humaine, secteur ayant besoin de produire des microalgues de manière contrôlée et intensifiée. Dans ce type de photobioréacteur intensifié, l'un des verrous majeurs est l'hydrodynamique, qui doit être optimisé en raison du confinement et de l'augmentation de la viscosité de la culture à haute concentration cellulaire, viscosité qui peut avoir un comportement non newtonien pour certaines souches de microalgues comme c'est le cas de Porphyridium cruentum (Fig. 1); le transfert gaz-liquide doit être maitrisé pour que le dioxyde de carbone ne soit pas limitant pour la croissance des microorganismes photosynthétiques et pour qu'il n'y ait pas d'accumulation de dioxygène [6] ; ainsi que de formation de biofilm. Cette présentation a pour objectif de présenter cette technologie de rupture et d'apporter des réponses aux problématiques d'hydrodynamique en optimisant notamment l'injection de gaz sur une solution modèle se rapprochant de Porphyridium et des transferts gaz-liquide pour l'aspect biofilm en travaillant en conditions réelles

    La grotte de Pertus II : occupations du Néolithique final

    No full text
    La grotte de Pertus II : occupations du Néolithique fina

    Short-term biological variation study of plasma hemophilia and thrombophilia parameters in a population of apparently healthy Caucasian adults.

    No full text
    OBJECTIVES: Biological variation (BV) data obtained in a standardized way is valuable to assess the analytical requirements and the utility of a reference interval. Our study aimed to determine the short-term BV of thrombophilia (protein S, protein C, activated protein C resistance (APCR) and factor VIII) and hemophilia (factors VIII, IX and XI) parameters in plasma. Coagulation factors V and XII were also evaluated. Based on the obtained data, we assessed analytical performance specifications for the parameters. Finally, we intended to provide a robust tool for comparison of serial measurements of factors V, VIII, IX and XI. METHODS: A blood draw was performed weekly in 19 apparently healthy Caucasian adults for five weeks at Saint-Luc University Hospital (Brussels, Belgium). Parameters were measured in duplicate. BV components were calculated with a nested analysis of variance after exclusion of outliers. RESULTS: The analytical coefficient of variation (CV) varied from 1.5 to 4.6%, the within-subject CV from 1.6 to 8.9% and the between-subject CV from 3.8 to 24.1%. All parameters showed high individuality. For most parameters, the analytical goal was met with our assays. Reference change values (RCV) of -16.7% to +20.0%, -20.7% to +26.0%, -15.3% to +18.1% and -13.1% to +15.1% were obtained for factors V, VIII, IX and XI respectively. CONCLUSIONS: All studied parameters were highly individualized. The assessment of BV data can guide setting analytical goal specifications. Comparison of serial measurements in the follow-up of patients suffering from hepatic failure or mild hemophilia is facilitated by evaluation of the RCV

    Les occupations néolithiques de Pertus II à Méailles

    No full text
    National audienceLa grotte de Pertus II fait depuis quelques années l’objet d’une fouille archéologique sous l’autorité du ministère de la Culture et dans le cadre d'un partenariat entre l'entreprise EVEHA, le CEPAM (CNRS - UMR 7264 - Université Côte d'Azur) et la mairie de Méailles. Elle est localisée sur la commune de Méailles (Alpes-de-Haute-Provence), au sud-ouest du massif du Grand Coyer. Exposée plein ouest, à un peu plus de 1000 mètres d'altitude, elle abrite une surface au sol d'environ 50 m². Son remplissage sédimentaire a enregistré de façon détaillée, sur plus de 3 mètres d’épaisseur, au moins 1000 ans d’histoire humaine depuis le premier quart du IVe millénaire jusqu'au milieu du IIIe millénaire avant notre ère. Les études préliminaires suggèrent une modification des modes d'exploitation du site au cours de cette période

    Photocatalytic degradation of paracetamol mediating luminous textile: Intensification of the chemical oxidation

    No full text
    International audienceAn innovative photoreactor was applied as an emerging advanced oxidation process (AOP) to investigate Paracetamol (PL) degradation under different operating conditions. The system consisted of a textile woven from optical fiber and textile yarn. The luminous fiber textile was coupled to UVA LED, and the photocatalytic textile fibers is impregnated with TiO2. The effectiveness of configuration I, based on a luminous textile with UV LED, was compared with that based of TiO2 immobilized on cellulosic paper (CP) with external UV irradiation (configuration 2). The specific degradation rate obtained with configuration 1 was 40 times higher than that with configuration II. Configuration I also showed efficient performance in mineralization per Watt consumed, with values reaching 81 times higher than those obtained with configuration II. Also, to achieve high removal effi-ciency of the pollutant with the new technology of luminous textiles, the effect of operating parameters, namely pollutant concentration, UV intensity, flow rate and TiO2 mass deposited were discussed. It is worth noting that the optimal conditions for a 95.7 % degradation rate of 1 mg/L of Paracetamol were obtained with 26 g/m2 mass catalyst, 5 W/m2 UV intensity and 52.2 L/h flow rate after 340 min. In addition, upon associating two luminous textiles, the degradation efficiency reached 98.76 % after only 140 min. Besides, by adding hydrogen peroxide (H2O2) in the optimal conditions with 10 mg/L of Paracetamol concentration, the degradation efficiency reached 98.81 % after 240 min. The excellent performances in terms of degradation rate, mineralization per Watt consumed, and energy consumption make luminous textiles an attractive alternative to conventional photo-catalytic reactors designed for the removal of Paracetamol in water and wastewater
    corecore