4 research outputs found

    Identification of dichloroacetic acid degrading Cupriavidus bacteria in a drinking water distribution network model

    Get PDF
    Aims: Bacterial community structure and composition of a drinking water network were assessed to better understand this ecosystem in relation to haloacetic acid (HAA) degradation and to identify new bacterial species having HAA degradation capacities. Methods and Results: Biofilm samples were collected from a model system, simulating the end of the drinking water distribution network and supplied with different concentrations of dichloroacetic and trichloroacetic acids at different periods over the course of a year. The samples were analysed by culturing, denaturing gradient gel electrophoresis (DGGE) and sequencing. Pipe diameter and HAA ratios did not impact the bacterial community profiles, but the season had a clear influence. Based on DGGE profiles, it appeared that a particular biomass has developed during the summer compared with the other seasons. Among the bacteria isolated in this study, those from genus Cupriavidus were able to degrade dichloroacetic acid. Moreover, these bacteria degrade dichloroacetic acid at 18°C but not at 10°C. Conclusions: The microbial diversity evolved throughout the experiment, but the bacterial community was distinct during the summer. Results obtained on the capacity of Cupriavidus to degrade DCAA only at 18°C but not at 10°C indicate that water temperature is a major element affecting DCAA degradation and confirming observations made regarding season influence on HAA degradation in the drinking water distribution network. Significance and Impact of the Study: This is the first demonstration of the HAA biodegradation capacity of the genus Cupriavidu

    MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms

    Get PDF
    Background: The production of stable and soluble proteins is one of the most important steps prior to structural and functional studies of biological importance. We investigated the parallel production in a medium throughput strategy of genes coding for proteins from various marine organisms, using protocols that involved recombinatorial cloning, protein expression screening and batch purification. This strategy was applied in order to respond to the need for post-genomic validation of the recent success of a large number of marine genomic projects. Indeed, the upcoming challenge is to go beyond the bioinformatic data, since the bias introduced through the genomes of the so called model organisms leads to numerous proteins of unknown function in the still unexplored world of the oceanic organisms. Results: We present here the results of expression tests for 192 targets using a 96-well plate format. Genes were PCR amplified and cloned in parallel into expression vectors pFO4 and pGEX-4T-1, in order to express proteins N-terminally fused to a six-histidine-tag and to a GST-tag, respectively. Small-scale expression and purification permitted isolation of 84 soluble proteins and 34 insoluble proteins, which could also be used in refolding assays. Selected examples of proteins expressed and purified to a larger scale are presented. Conclusions: The objective of this program was to get around the bottlenecks of soluble, active protein expression and crystallization for post-genomic validation of a number of proteins that come from various marine organisms. Multiplying the constructions, vectors and targets treated in parallel is important for the success of a medium throughput strategy and considerably increases the chances to get rapid access to pure and soluble protein samples, needed for the subsequent biochemical characterizations. Our set up of a medium throughput strategy applied to genes from marine organisms had a mean success rate of 44% soluble protein expression from marine bacteria, archaea as well as eukaryotic organisms. This success rate compares favorably with other protein screening projects, particularly for eukaryotic proteins. Several purified targets have already formed the base for experiments aimed at post-genomic validation

    Memory or acclimation of water stress in pea rely on root system's plasticity and plant's ionome modulation

    No full text
    International audienceIntroduction: Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. Method: To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. Conclusion: Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period

    Haloacetic acid degradation by a biofilm in a simulated drinking water distribution system

    No full text
    Haloacetic acids (HAAs) are disinfection by-products formed as a result of the reaction between chlorine and natural organic matter found in water. HAA concentrations have been observed to decrease at distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAA degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of dichloracetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, composition of organic matter, and pipe diameter. Seasonal variations had a major effect on HAA degradation and biomass quantity was lower by 1 to 2 logs in the winter and spring compared with the fall. HAA removal decreased with increasingly large pipe diameters. The specific effects of each of these factors were difficult to isolate from each other owing to interactions
    corecore