67 research outputs found

    Procedimiento de descontaminación superficial de alimentos sólidos envasados

    Get PDF
    Número de publicación: 2 534 529 Número de solicitud: 201530326Procedimiento de descontaminación microbiana de alimentos sólidos envasados mediante aceites esenciales (AEs) que comprende una evaporación de los AEs a vacío, y una aplicación a vacío de los vapores de AEs sobre el alimento sólido situado en un envase abierto, en donde dichos vapores son arrastrados por aire o por una mezcla de gases de grado alimentario y conducidos hasta el recinto al vacío, en donde se encuentra el alimento envasado al que se va a descontaminar microbiológicamente.Universidad Politécnica de Cartagen

    Termoformadora ultralimpia para film rígido, semirrígido y flexible

    Get PDF
    Número de publicación: 2 545 431 Número de solicitud: 201530316Máquina termoformadora ultralimpia de film rígido, semirrígido o flexible, para la obtención de envases ultralimpios de alimentos en forma de bol, bandeja, barqueta o cesta, que posee un adecuado diseño higiénico, que cumple, en su arquitectura y componentes, las normas básicas de diseño higiénico de equipos de procesado de alimentos líquidos, y que incorpora un sistema automático de limpieza y desinfección, de forma automática y sin desmontar, que actúa de forma programada, y con la frecuencia adecuada, para garantizar unas buenas condiciones de higiene, y un control seguro de la descontaminación microbiana; que posee un cerramiento donde se genera y mantiene un recinto microbiológicamente controlado (que envuelve a todas las estaciones de la termoformadora) mediante la inyección de aire que se pasa por filtros HEPA o ULPA que retienen con alta eficacia las partículas de diámetro igual o superior a 0,5 micrómetros.Universidad Politécnica de Cartagen

    Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands

    Get PDF
    Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify “phase or cell-state–specific” gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase–encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity

    Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium

    Get PDF
    Moderate osmolality can stimulate bacterial growth at temperatures near the upper limit for growth. We investigated the mechanism by which high osmolality enhances the thermotolerance of Salmonella enterica serovar Typhimurium, by isolating bacteriophage MudI1734-induced insertion mutations that blocked the growth-stimulatory effect of 0.2 M NaCl at 45°C. One of these mutations proved to be in the seqA gene (a regulator of initiation of DNA synthesis). Because this gene is cotranscribed with pgm (which encodes phosphoglucomutase), it is likely to be polar on the expression of the pgm gene. Pgm catalyzes the conversion of glucose-6-phosphate to glucose-1-phosphate during growth on glucose, and therefore loss of Pgm results in a deficiency in a variety of cellular constituents derived from glucose-1-phosphate, including trehalose. To test the possibility that the growth defect of the seqA::MudI1734 mutant at high temperature in medium of high osmolality is due to the block in trehalose synthesis, we determined the effect of an otsA mutation, which inactivates the first step of the trehalose biosynthetic pathway. The otsA mutation caused a growth defect at 45°C in minimal medium containing 0.2 M NaCl that was similar to that caused by the pgm mutation, but otsA did not affect growth rate in this medium at 37°C. These results suggest that the growth defect of the seqA-pgm mutant at high temperature could be a consequence of the block in trehalose synthesis. We found that, in addition to the well-known osmotic control, there is a temperature-dependent control of trehalose synthesis such that, in medium containing 0.2 M NaCl, cells grown at 45°C had a fivefold higher trehalose pool size than cells grown at 30°C. Our observations that trehalose accumulation is thermoregulated and that mutations that block trehalose synthesis cause a growth defect at high temperature in media of high osmolality suggested that this disaccharide is crucial for growth at high temperature either for turgor maintenance or for protein stabilization.Departamento de Agricultura 98–35201-621

    High-throughput format for the phenotyping of fungi on solid substrates

    Get PDF
    Filamentous fungi naturally grow on solid surfaces, yet most genetic and biochemical analyses are still performed in liquid cultures. Here, we report a multiplexing platform using high-throughput photometric continuous reading that allows parallel quantification of hyphal growth and reporter gene expression directly on solid medium, thereby mimicking natural environmental conditions. Using this system, we have quantified fungal growth and expression of secondary metabolite GFP-based reporter genes in saprophytic Aspergillus and phytopathogenic Fusarium species in response to different nutrients, stress conditions and epigenetic modifiers. With this method, we provide not only novel insights into the characteristic of fungal growth but also into the metabolic and time-dependent regulation of secondary metabolite gene expression

    Evolution of asexual and sexual reproduction in the aspergilli

    Get PDF
    Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative ‘asexual’ species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.National Natural Science Foundation of China 31601446National Research Foundation of Korea 2016010945Intelligent Synthetic Biology Center of Global Frontier Projects 2015M3A6A8065838Biotechnology and Biological Sciences Research CouncilGovernment of IraqMinisterio de Economía y Competitividad BIO2015-67148-

    Nitric oxide in fungi: is there NO light at the end of the tunnel?

    Get PDF
    Nitric oxide (NO) is a remarkable gaseous molecule with multiple and important roles in different organisms, including fungi. However, the study of the biology of NO in fungi has been hindered by the lack of a complete knowledge on the different metabolic routes that allow a proper NO balance, and the regulation of these routes. Fungi have developed NO detoxification mechanisms to combat nitrosative stress, which have been mainly characterized by their connection to pathogenesis or nitrogen metabolism. However, the progress on the studies of NO anabolic routes in fungi has been hampered by efforts to disrupt candidate genes that gave no conclusive data until recently. This review summarizes the different roles of NO in fungal biology and pathogenesis, with an emphasis on the alternatives to explain fungal NO production and the recent findings on the involvement of nitrate reductase in the synthesis of NO and its regulation during fungal development

    Evidence for an arginine-dependent route for the synthesis of NO in the model filamentous fungus Aspergillus nidulans

    Get PDF
    Nitric oxide (NO) is a signalling molecule in eukaryotic and prokaryotic organisms. NO levels transiently boost upon induction of conidiation in Aspergillus nidulans. Only one pathway for NO synthesis involving nitrate reductase has been reported in filamentous fungi so far, but this does not satisfy all the NO produced in fungal cells. Here we provide evidence for at least one additional biosynthetic pathway in A. nidulans involving l-arginine or an intermediate metabolite as a substrate. Under certain growth conditions, the addition of l-arginine to liquid media elicited a burst of NO that was not dependent on any of the urea cycle genes. The NO levels were controlled by the metabolically available arginine, which was regulated by mobilization from the vacuoles and during development. In vitro assays with protein extracts and amino acid profiling strongly suggested the existence of an arginine-dependent NO pathway analogous to the mammalian NO synthase. Addition of polyamines induced NO synthesis, and mutations in the polyamine synthesis genes puA and spdA reduced the production of NO. In conclusion, here we report an additional pathway for the synthesis of NO in A. nidulans using urea cycle intermediates.Austrian Federal Ministry of Education, Science and Research P 3279

    Predicted photoreflectance signatures on QD selective contacts for hot carrier solar cells

    Get PDF
    The CO2 emission of our present energy transformation processes, based mainly on burning fossil fuels, is possibly the main cause of global climatic change. The photovoltaic conversion of solar energy is a clean way of producing which for sustainability should (and most probably will) become a major source of electricity. The sun is a huge resource but relatively diluted and it is reasonable to expect that only high efficiency extraction can be cost effective for mass exploitation. New concepts are neccessary such as hot carrier solar cells

    Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants

    Get PDF
    BACKGROUND: Aspergillus spp. comprises a very diverse group of lower eukaryotes with a high relevance for industrial applications and clinical implications. These multinucleate species are often cultured for many generations in the laboratory, which can unknowingly propagate hidden genetic mutations. To assess the likelihood of such events, we studied the genome stability of aspergilli by using a combination of mutation accumulation (MA) lines and whole genome sequencing. RESULTS: We sequenced the whole genomes of 30 asexual and 10 sexual MA lines of three Aspergillus species (A. flavus, A. fumigatus and A. nidulans) and estimated that each MA line accumulated mutations for over 4000 mitoses during asexual cycles. We estimated mutation rates of 4.2 × 10-11 (A. flavus), 1.1 × 10-11 (A. fumigatus) and 4.1 × 10-11 (A. nidulans) per site per mitosis, suggesting that the genomes are very robust. Unexpectedly, we found a very high rate of GC → TA transversions only in A. flavus. In parallel, 30 asexual lines of the non-homologous end-joining (NHEJ) mutants of the three species were also allowed to accumulate mutations for the same number of mitoses. Sequencing of these NHEJ MA lines gave an estimated mutation rate of 5.1 × 10-11 (A. flavus), 2.2 × 10-11 (A. fumigatus) and 4.5 × 10-11 (A. nidulans) per base per mitosis, which is slightly higher than in the wild-type strains and some ~ 5-6 times lower than in the yeasts. Additionally, in A. nidulans, we found a NHEJ-dependent interference of the sexual cycle that is independent of the accumulation of mutations. CONCLUSIONS: We present for the first time direct counts of the mutation rate of filamentous fungal species and find that Aspergillus genomes are very robust. Deletion of the NHEJ machinery results in a slight increase in the mutation rate, but at a rate we suggest is still safe to use for biotechnology purposes. Unexpectedly, we found GC→TA transversions predominated only in the species A. flavus, which could be generated by the hepatocarcinogen secondary metabolite aflatoxin. Lastly, a strong effect of the NHEJ mutation in self-crossing was observed and an increase in the mutations of the asexual lines was quantifiedEspaña, MINECO grant number BIO2015-6714
    corecore