57 research outputs found

    Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS

    Get PDF
    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC–ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin–Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents.This work was supported by the project AGL2011-29857-C03-02 and AP2010-1551 (Spanish Ministry of Science and Innovation), as well as P09-CTS-4564, P10-FQM-6563 and P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science). The authors are also grateful to Instituto de Salud Carlos III for the Sara Borrell Grant (CD12/00672

    From Grape By-Products to Enriched Yogurt Containing Pomace Extract Loaded in Nanotechnological Nutriosomes Tailored for Promoting Gastro-Intestinal Wellness

    Get PDF
    Grape pomace is the main by-product generated during the winemaking process; since it is still rich in bioactive molecules, especially phenolic compounds with high antioxidant power, its transformation in beneficial and health-promoting foods is an innovative challenge to extend the grape life cycle. Hence, in this work, the phytochemicals still contained in the grape pomace were recovered by an enhanced ultrasound assisted extraction. The extract was incorporated in liposomes prepared with soy lecithin and in nutriosomes obtained combining soy lecithin and Nutriose FM06¼, which were further enriched with gelatin (gelatin-liposomes and gelatin-nutriosomes) to increase the samples’ stability in modulated pH values, as they were designed for yogurt fortification. The vesicles were sized ~100 nm, homogeneously dispersed (polydispersity index < 0.2) and maintained their characteristics when dispersed in fluids at different pH values (6.75, 1.20 and 7.00), simulating salivary, gastric and intestinal environments. The extract loaded vesicles were biocompatible and effectively protected Caco-2 cells against oxidative stress caused by hydrogen peroxide, to a better extent than the free extract in dispersion. The structural integrity of gelatin-nutriosomes, after dilution with milk whey was confirmed, and the addition of vesicles to the yogurt did not modify its appearance. The results pointed out the promising suitability of vesicles loading the phytocomplex obtained from the grape by-product to enrich the yogurt, offering a new and easy strategy for healthy and nutritional food development.Ecosystem of Innovation for Next Generation Sardinia” funded by the Italian Ministry of University and ResearchNext- Generation EU Programme (National Recovery and Resilience Plan—PNRR, M4C2, INVESTMENT 1.5—DD 1056 of 23/06/2022, ECS00000038)The European Union under the ENI CBC MED Programme 2014–2020, BESTMEDGRAPE Project reference number A_A.2.1_0035Fondazione di Sardegna 202

    Functional Ingredients based on Nutritional Phenolics. A Case Study against Inflammation: Lippia Genus

    Get PDF
    Epidemiological studies have reported convincing evidence that natural dietary compounds may modify inflammation, it being an important event described in the pathophysiology of age-related infirmity. Among different dietary components, nutritional phenolics have demonstrated links to a lower risk of inflammation in the most common degenerative and chronic diseases. In this way, the healthy potential of phenolics against inflammation and the emergence of new functional ingredients have caused an enhancement of nutraceutical and functional food formulation. The present review focuses on: (a) nutritional phenolics and their effects on inflammation and (b) functional ingredients based on phenolic compounds with anti-inflammatory properties. Furthermore, the emerging interest in health-promoting products by consumers has caused an increase in the demand for functional products and nutraceuticals. Additionally, this review includes a case study of the Lippia genus, which has shown anti-inflammatory effects claiming to be a natural alternative for the management of this physiological disorder. This report is a practical tool for healthcare providers.This work was funded by projects AGL2015-67995-C3-2-R and IJCI2015-26789 (Spanish Ministry of Science and Innovation), P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science) and RTI2018-096724-B-C22 (Ministry of Science, Innovation and Universities). The author Leyva-Jimenez gratefully acknowledges the Spanish Ministry of Economy and Competitiveness (MINECO) for the FPI grant BES-2016-076618 given to develop this work

    Extraction and Analysis of Phenolic Compounds in Rice: A Review

    Get PDF
    Rice represents the main source of calorie intake in many world countries and about 60% of the world population include rice in their staple diet. Whole grain rice, also called brown rice, represent the unpolished version of the more common white rice including bran, germ, and endosperm. Many health-promoting properties have been associated to the consumption of whole grain rice and, for this reason, great attention has been paid by the scientific community towards the identification and the quantification of bioactive compounds in this food item. In this contribution, the last five years progresses in the quali-quantitative determination of phenolic compounds in rice have been highlighted. Special attention has been devoted to the most recent strategies for the extraction of the target compounds from rice along with the analytical approaches adopted for the separation, identification and quantification of phenolic acids, flavonoids, anthocyanins, and proanthocyanidins. More specifically, the main features of the “traditional” extraction methods (i.e., maceration, ultrasound-assisted extraction) have been described, as well as the more innovative protocols involving advanced extraction techniques, such as MAE (microwave-assisted extraction). The predominant role of HPLC in the definition of the phenolic profile has been examined also presenting the most recent results obtained by using mass spectrometry-based detection systems. In addition, the most common procedures aimed to the quantification of the total amount of the cited classes of phenolic compounds have been described together with the spectrophotometric protocols aimed to the evaluation of the antioxidant properties of rice phenolic extracts (i.e., FRAP, DPPH, ABTS and ORAC)

    Optimizing vacuum drying process of polyphenols, flavanols and DPPH radical scavenging assay in pod husk and bean shell cocoa

    Get PDF
    The objective of this study was to optimize different vacuum drying conditions for cocoa pod husk and cocoa bean shell in order to enhance these by-products for commercial applications. To carry out the optimization, the response surface methodology was applied using a Box–Behnken experimental design with 15 experiments for which different conditions of temperature (X1), drying time (X2) and vacuum pressure (X3) were established. The response variables were the content of total polyphenols, the content of flavanols and the radical scavenging activity evaluated in the extracts of the different experiments. Temperature (50–70 °C), drying time (3–12 h) and vacuum pressure (50–150 mbar) were considered as independent variables. The main factors affecting the response variables were temperature, followed by vacuum pressure. For the content of polyphenols, the optimal response values predicted for the cocoa pod husk was 11.17 mg GAE/g with a confidence limit (95%) of 9.05 to 13.28 mg GAE/g (optimal conditions: 65 °C, 8 h and 75 mbar), while for the cocoa bean shell cocoa was 29.61 mg GAE/g with a confidence limit (95%) of 26.95 to 32.26 mg GAE/g (optimal conditions: 50 °C, 5 h and 100 mbar). Therefore, results of this study suggest a high content of phenolic compounds obtained from these by-products that show relevance as functional ingredients for application in the food, nutraceutical, and cosmeceutical industriesFondo Nacional de Desarrollo CientĂ­fico, TecnolĂłgico y de InnovaciĂłn TecnolĂłgica of PerĂș, project number 184-2020-FONDECY

    Diet Supplementation with Polyphenol-Rich Salicornia ramosissima Extracts Protects against Tissue Damage in Experimental Models of Cerebral Ischemia

    Get PDF
    Strokes are the secondmost common cause of death worldwide and a leading cause of disability. Regular consumption of polyphenols has been shown to reduce the risk of suffering a cardiovascular event. For this reason, we have investigated the protective effect of Salicornia ramosissima, a seasonal halophyte that synthetizes high amounts of bioactive compounds, including polyphenols, in response to environmental stress. Aqueous, hydroalcoholic, and ethanolic extracts were prepared to investigate if dietary supplementation prior to ischemic challenge can prevent subsequent damage using two animal models. First, we screened the protective effect against hypoxia–reoxygenation in Drosophila melanogaster and observed that both ethanolic and hydroalcoholic extracts protected flies from the deleterious effects of hypoxia. Second, we confirmed the protective effect of S. ramosissima ethanolic extract against brain ischemia using the transient middle cerebral artery occlusion mice model. Four weeks of oral supplementation with the ethanolic extract before artery occlusion reduced infarct volume and lowered the plasma levels of the DNA peroxidant product 8-hydroxydeoxyguanosine. Phytochemical profiling of S. ramosissima ethanolic extract revealed 50 compounds. Thus, it represents a valuable source of bioactive compounds that show promising disease-modifying activities and could be further developed as an effective food supplement for the prevention or treatment of neurovascular disorders.PE-0527-2019 Programa Operativo FEDERConsejería de Transformación Económica, Industria, Conocimiento y Universidades[PY20_01351]ISCIII, grant number [CD21/00148

    Theobroma cacao improves bone growth by modulating defective ciliogenesis in a mouse model of achondroplasia

    Get PDF
    We thank the Imagine Institute's imaging facility and the SFR's histology facility for their help with this work. This program received a state subsidy managed by the National Research Agency under the "Investments for the Future" Program bearing the reference ANR-10-IAHU-01. Some of the work presented here was funded by the European Community's Seventh Framework Program under grant agreement 602300 (the SYBIL program (https://www.sybil-fp7.eu/) is funded by the MRC (MC_UU_000007/9)).A gain-of-function mutation in the fibroblast growth factor receptor 3 gene (FGFR3) results in achondroplasia (ACH), the most frequent form of dwarfism. Constitutive activation of FGFR3 impairs bone formation and elongation and many signal transduction pathways. Identification of new and relevant compounds targeting the FGFR3 signaling pathway is of broad importance for the treatment of ACH, and natural plant compounds are prime drug candidate sources. Here, we found that the phenolic compound (-)-epicatechin, isolated from Theobroma cacao, effectively inhibited FGFR3’s downstream signaling pathways. Transcriptomic analysis in an Fgfr3 mouse model showed that ciliary mRNA expression was modified and influenced significantly by the Indian hedgehog and PKA pathways. (-)-Epicatechin is able to rescue mRNA expression impairments that control both the structural organization of the primary cilium and ciliogenesis-related genes. In femurs isolated from a mouse model (Fgfr3Y367C/+) of ACH, we showed that (-)-epicatechin eliminated bone growth impairment during 6 days of ex vivo culture. In vivo, we confirmed that daily subcutaneous injections of (-)-epicatechin to Fgfr3Y367C/+ mice increased bone elongation and rescued the primary cilium defects observed in chondrocytes. This modification to the primary cilia promoted the typical columnar arrangement of flat proliferative chondrocytes and thus enhanced bone elongation. The results of the present proof-of-principle study support (-)-epicatechin as a potential drug for the treatment of ACH.French National Research Agency (ANR) ANR-10-IAHU-01European Community - MRC 602300 MC_UU_000007/

    Selectivity Tuning by Natural Deep Eutectic Solvents (NADESs) for Extraction of Bioactive Compounds from Cytinus hypocistis—Studies of Antioxidative, Enzyme-Inhibitive Properties and LC-MS Profiles

    Get PDF
    In the present study, the extracts of Cytinus hypocistis (L.) L using both traditional solvents (hexane, ethyl acetate, dichloromethane, ethanol, ethanol/water, and water) and natural deep eutectic solvents (NADESs) were investigated in terms of their total polyphenolic contents and antioxidant and enzyme-inhibitive properties. The extracts were found to possess total phenolic and total flavonoid contents in the ranges of 26.47–186.13 mg GAE/g and 0.68–12.55 mg RE/g, respectively. Higher total phenolic contents were obtained for NADES extracts. Compositional differences were reported in relation to antioxidant potential studied by several assays (DPPH: 70.19–939.35 mg TE/g, ABTS: 172.56–4026.50 mg TE/g; CUPRAC: 97.41–1730.38 mg TE/g, FRAP: 84.11–1534.85 mg TE/g). Application of NADESs (choline chloride—urea 1:2, a so-called Reline) allowed one to obtain the highest number of extracts having antioxidant potential in the radical scavenging and reducing assays. NADES-B (protonated by HCl L-proline-xylitol 5:1) was the only extractant from the studied solvents that isolated a specific fraction without chelating activity. Reline extract exhibited the highest acetylcholinesterase inhibition compared to NADES-B and NADES-C (protonated by H2SO4 L-proline-xylitol 5:1) extracts, which showed no inhibition. The NADES extracts were observed to have higher tyrosinase inhibitory properties compared to extracts obtained by traditional organic solvents. Furthermore, the NADES extracts were relatively better inhibitors of the diabetic enzymes. These findings provided an interesting comparison in terms of total polyphenolic content yields, antioxidant and enzyme inhibitory properties (cholinesterase, amylase, glucosidase, and tyrosinase) between traditional solvent extracts and NADES extracts, used as an alternative. While the organic solvents showed better antioxidant activity, the NADES extracts were found to have some other improved properties, such as higher total phenolic content and enzyme-inhibiting properties, suggesting functional prospects for their use in phytonutrient extraction and fractionation. The obtained results could also be used to give a broad overview of the different biological potentials of C. hypocistis.National Science Centre, Poland UMO-2018/30/E/ST8/0064

    A Review on Tradescantia: Phytochemical Constituents, Biological Activities and Health-Promoting Effects

    Get PDF
    Tradescantia is a genus of herbaceous and perennial plants belonging to the Commelinaceae family and organized into three infrageneric classifications and 12 sections. More than 80 species within the genus have been used for centuries for medicinal purposes. Phytochemical compounds (from various species of the genus) such as coumarins, alkaloids, saponins, flavonoids, phenolics, tannins, steroids and terpenoids have recently been characterized and described with antioxidant, cytotoxic, anti-inflammatory, anticancer or antimicrobial properties. The objective of this review is to describe the different aspects of the genus Tradescantia, including its botanical characteristics, traditional uses, phytochemical composition, biological activities, and safety aspects

    Enhancing the Yield of Bioactive Compounds from Sclerocarya birrea Bark by Green Extraction Approaches

    Get PDF
    Sclerocarya birrea is a tree indigenous to Southern Africa with significant importance in rural livelihoods for food, medicine, and carving. The bark, which contains 10–20% tannin, provides several pharmacological benefits as an antidiabetic, anti-inflammatory, antimicrobial, anti-atherogenic, and antioxidant medication, among others. This study compared different extraction techniques used to recover bioactive compounds from marula bark. For this purpose, solid–liquid extraction, supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE) were performed under selected conditions, using only “food-grade” solvents. The potential use of the proposed extraction methodologies was evaluated in term of yield, and the individual phenolic composition determined by HPLC–ESI–TOF–MS. PLE provided a high extraction yield in all experimental conditions. With regard to bioactive compounds composition, a total of 71 compounds, a significant percentage of which in a galloyl form, were distributed in five major categories. The largest number of compounds, mostly flavonoid aglycones, were extracted by PLE, generally when the extraction was developed at low temperatures. SFE did prove effective as a way of extracting antidiabetic proanthocyanidins. Advanced extraction techniques represent a powerful tool to obtain bioactive compounds from S. birrea bark, which can be used as supplements or food ingredients, promoting the valorization of this crop.This work was supported by the project AGL2015-67995-C3-2-R (Spanish Ministry of Science and Innovation) as well as P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science) and The European Social Fund (FSE) for the contract PTQ-13-06429
    • 

    corecore