100 research outputs found

    TNT biotransformation and detoxification by a \u3ci\u3ePseudomonas aeruginosa\u3c/i\u3e strain

    Get PDF
    Successful microbial-mediated remediation requires transformation pathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitionscontaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2′- azoxytoluene (2,2′AZT, primarily in the cell fraction), which accumulated as major products via the intermediate 2-hydroxylamino-4,6-dinitrotoluene(2HADNT). The 2HADNT and 2,2′AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX

    TNT biotransformation and detoxification by a \u3ci\u3ePseudomonas aeruginosa\u3c/i\u3e strain

    Get PDF
    Successful microbial-mediated remediation requires transformation pathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitionscontaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2′- azoxytoluene (2,2′AZT, primarily in the cell fraction), which accumulated as major products via the intermediate 2-hydroxylamino-4,6-dinitrotoluene(2HADNT). The 2HADNT and 2,2′AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX

    Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite

    Get PDF
    The effectiveness of nanoscale zero-valent iron (nZVI) to remove heavy metals from water is reduced by its low durability, poor mechanical strength, and tendency to form aggregates. A composite of zeolite and nanoscale zero-valent iron (Z–nZVI) overcomes these problems and shows good potential to remove Pb from water. FTIR spectra support nZVI loading onto the zeolite and reduced Fe0 oxidation in the Z–nZVI composite. Scanning electron micrographs show aggregation was eliminated and transmission electron micrographs show well-dispersed nZVI in chain-like structures within the zeolite matrix. The mean surface area of the composite was 80.37 m2/g, much greater than zeolite (1.03 m2/g) or nZVI (12.25 m2/g) alone, as determined by BET-N2 measurement. More than 96% of the Pb(II) was removed from 100 mL of solution containing 100 mg Pb(II)/L within 140 min of mixing with 0.1 g Z–nZVI. Tests with solution containing 1000 mg Pb(II)/L suggested that the capacity of the Z–nZVI is about 806 mg Pb(II)/g. Energy-dispersive X-ray spectroscopy showed the presence of Fe in the composite; X-ray diffraction confirmed formation and immobilization of Fe0 and subsequent sorption and reduction of some of the Pb(II) to Pb0. The low quantity of Pb(II) recovered in water-soluble and Ca(NO3)2-extractable fractions indicate low bioavailability of the Pb(II) removed by the composite. Results support the potential use of the Z–nZVI composite in permeable reactive barriers

    Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite

    Get PDF
    The effectiveness of nanoscale zero-valent iron (nZVI) to remove heavy metals from water is reduced by its low durability, poor mechanical strength, and tendency to form aggregates. A composite of zeolite and nanoscale zero-valent iron (Z–nZVI) overcomes these problems and shows good potential to remove Pb from water. FTIR spectra support nZVI loading onto the zeolite and reduced Fe0 oxidation in the Z–nZVI composite. Scanning electron micrographs show aggregation was eliminated and transmission electron micrographs show well-dispersed nZVI in chain-like structures within the zeolite matrix. The mean surface area of the composite was 80.37 m2/g, much greater than zeolite (1.03 m2/g) or nZVI (12.25 m2/g) alone, as determined by BET-N2 measurement. More than 96% of the Pb(II) was removed from 100 mL of solution containing 100 mg Pb(II)/L within 140 min of mixing with 0.1 g Z–nZVI. Tests with solution containing 1000 mg Pb(II)/L suggested that the capacity of the Z–nZVI is about 806 mg Pb(II)/g. Energy-dispersive X-ray spectroscopy showed the presence of Fe in the composite; X-ray diffraction confirmed formation and immobilization of Fe0 and subsequent sorption and reduction of some of the Pb(II) to Pb0. The low quantity of Pb(II) recovered in water-soluble and Ca(NO3)2-extractable fractions indicate low bioavailability of the Pb(II) removed by the composite. Results support the potential use of the Z–nZVI composite in permeable reactive barriers

    Cottonseed Oilcake Extract Mediated Green Synthesis of Silver Nanoparticles and Its Antibacterial and Cytotoxic Activity

    Get PDF
    Agroindustrial byproduct mediated green synthesis of silver nanoparticles was carried out using cottonseed oilcake (CSOC) extract. The aqueous silver nitrate formed stable silver nanoparticles with CSOC extract as a reducing agent for Ag+ to Ag0. The synthesized nanoparticles were characterized using energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) techniques. The synthesized silver nanoparticles (AgNPs) (4 mM) significantly inhibited the growth of phytopathogens, Pseudomonas syringae pv. actinidiae and Ralstonia solanacearum. Further, cytotoxicity of AgNPs was evaluated using rat splenocyte cells. The splenocyte viability was decreased according to the increasing concentration of AgNPs and 90% of cell death was observed at 100 μg/mL

    Anti-apoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro

    Get PDF
    Apoptosis and oxidative stress are essential for the pathogenesis of acute liver failure and fulminant hepatic failure. Human placental hydrolysate (hPH) has been reported to possess antioxidant and anti-inflammatory properties. In the present study, the protective effects of hPH against D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced hepatocyte apoptosis were investigated in vivo. In addition, the molecular mechanisms underlying the anti-apoptotic activities of hPH against D-GalN-induced cell death in vitro were examined. Male Sprague-D awley rats were injected with D-GaIN/LPS with or without the administration of hPH. Rats were sacrificed 24 h after D-GaIN/LPS intraperitoneal injection, and the blood and liver samples were collected for future inflammation and hepatotoxicity analyses. Changes in cell viability, apoptosis protein expression, mitochondrial mass, mitochondrial membrane potential, reactive oxygen species generation, and the levels of proteins and mRNA associated with a protective mechanism were determined in HepG2 cells pretreated with hPH for 2 h prior to D-GalN exposure. The findings suggested that hPH treatment effectively protected against D-GalN/LPS-induced hepatocyte apoptosis by reducing the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, interleukin-6, and tumor necrosis factor-Îą, and increasing the level of proliferating cell nuclear antigen. It was also found that hPH inhibited the apoptotic cell death induced by D-GalN. hPH activated the expression of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, and catalase, which were further upregulated by the Kelch-like ECH2-associated protein 1-p62-nuclear factor-erythroid 2-related factor 2 pathway, a component of oxidative stress defense mechanisms. Furthermore, hPH markedly reduced cytosolic and mitochondrial reactive oxygen species and rescued mitochondrial loss and dysfunction through the reduction of damage-regulated autophagy modulator, p53, and C/EBP homologous protein. Collectively, hPH exhibited a protective role in hepatocyte apoptosis by inhibiting oxidative stress and maintaining cell homeostasis. The underlying mechanisms may be associated with the inhibition of endoplasmic reticulum stress and minimization of the autophagy progress

    A single gene of a commensal microbe affects host susceptibility to enteric infection

    Get PDF
    Indigenous microbes inside the host intestine maintain a complex self-regulating community. The mechanisms by which gut microbes interact with intestinal pathogens remain largely unknown. Here we identify a commensal Escherichia coli strain whose expansion predisposes mice to infection by Vibrio cholerae, a human pathogen. We refer to this strain as 'atypical' E. coli (atEc) because of its inability to ferment lactose. The atEc strain is resistant to reactive oxygen species (ROS) and proliferates extensively in antibiotic-treated adult mice. V. cholerae infection is more severe in neonatal mice transplanted with atEc compared with those transplanted with a typical E. coli strain. Intestinal ROS levels are decreased in atEc-transplanted mice, favouring proliferation of ROS-sensitive V. cholerae. An atEc mutant defective in ROS degradation fails to facilitate V. cholerae infection when transplanted, suggesting that host infection susceptibility can be regulated by a single gene product of one particular commensal species.

    Optical Shaping of Plasma Cavity for Controlled Laser Wakefield Acceleration

    Full text link
    Laser wakefield accelerators rely on relativistically moving micron-sized plasma cavities that provide extremely high electric field >100GV/m. Here, we demonstrate transverse shaping of the plasma cavity to produce controlled sub-GeV electron beams, adopting laser pulses with an axially rotatable ellipse-shaped focal spot. We showed the control capability on electron self-injection, charge, and transverse profile of the electron beam by rotating the focal spot. We observed that the effect of the elliptical focal spot was imprinted in the profiles of the electron beams and the electron energy increased, as compared to the case of a circular focal spot. We performed 3D particle-in-cell (PIC) simulations which reproduced the experimental results and revealed dynamics of a new asymmetric self-injection process. This simple scheme offers a novel control method on laser wakefield acceleration to produce tailored electron beams and x-rays for various applications.Comment: 5 pages, 5 figure
    • …
    corecore