705 research outputs found

    Miniaturized ISFET Glucose Sensor Including a New Structure Actuation System

    Get PDF
    A new principle of an amperometric actuation technique was incorporated in the ISFET glucose sensor. The ISFET is fabricated by the CMOS process and the platinum working electrode is deposited by the lift-off process. A sensor with a specially designed ladder type working electrode exhibits improved operation in response time, response magnitude and detection range. An expectation concerning the reduction of sensor size is also discussed

    Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Get PDF
    This study examined the influence of the N-methyl-D-aspartate receptor (NMDAR) on the modulation of related spinal signaling after electroacupuncture (EA) treatment in normal rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA) were delivered at acupoints corresponding to Zusanli (ST36) and Sanyinjiao (SP6) in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB), and especially phosphatidylinositol 3-kinase (PI3K) were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB

    Menthol Enhances an Antiproliferative Activity of 1α,25-Dihydroxyvitamin D3 in LNCaP Cells

    Get PDF
    1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the most active form of vitamin D3, and its analogues have therapeutic benefits for prostate cancer treatment. However, the development of hypercalcemia is an obstacle to clinical applications of 1α,25(OH)2D3 for cancer therapy. In this study, we provide evidence that menthol, a key component of peppermint oil, increases an anti-proliferation activity of 1α,25(OH)2D3 in LNCaP prostate cancer cells. We found that menthol per se does not exhibit antiproliferative activity, but it is able to enhance 1α,25(OH)2D3-mediated growth inhibition in LNCaP cells. Fluorometric assays using Fura-2 showed that 1α,25(OH)2D3 does not induce acute Ca2+ response, whereas menthol evokes an increase in [Ca2+]i, which suggests that cross-talks of menthol-induced Ca2+ signaling with 1α,25(OH)2D3-mediated growth inhibition pathways. In addition, Western blot analysis revealed that 1α,25(OH)2D3 and menthol cooperatively modulate the expression of bcl-2 and p21 which provides the insight into the molecular mechanisms underlying the enhanced 1α,25(OH)2D3-mediated growth inhibition by menthol. Thus, our findings suggest that menthol may be a useful natural compound to enhance therapeutic effects of 1α,25(OH)2D3

    The selenoproteome of \u3ci\u3eClostridium\u3c/i\u3e sp. OhILAs: Characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A

    Get PDF
    Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by 75Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues

    The selenoproteome of \u3ci\u3eClostridium\u3c/i\u3e sp. OhILAs: Characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A

    Get PDF
    Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by 75Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues

    EFFECTS OF SALINITY ON OXYGEN CONSUMPTION AND BLOOD PROPERTIES OF YOUNG GREY MULLETS Mugil cephalus

    Get PDF
    Oxygen consumption (OC) is one of important factors in aquaculture activities, as the oxygen is a vital condition for all the organisms living in the water and having an aerobic type of respiration. OC is the preferred method for measuring and reporting the metabolic rate in fish. The aims of this study were to evaluate the effects of salinity on OC and blood properties of grey mullets. Five experimental groups were conducted to measure OC and blood properties of grey mullets Mugil cephalus (BW: 187.9 ± 45.8 g) according to salinity (30→0 psu, 0→30 psu) changes; SDS: fish reared in seawater (SW, 30 psu) directly shifted to SW, SGF: SW fish gradually shifted to freshwater (FW, 0 psu), SDF: SW fish directly shifted to FW, FDF: FW fish directly shifted to FW, and FDS: FW fish directly shifted to SW. The result showed that OC tended to decrease in the groups of SW fish shifted to FW showing 194.5 mg O2/kg/h at 25°C in SDS to 82.4 mg O2/kg/h at 15°C in SGF. On the contrary, OC increased in the groups of FW fish shifted to SW showing 80.5 mg O2/kg/h at 15°C in FDF to 184.0 mg O2/kg/h at 25°C in FDS. Cortisol levels at the end of experiments were rapidly increased with the lowering salinities in SW fish shifted to FW showing 20.6 ng/mL in SDS to 316.2 ng/mL in SDF, while those were decreased with the increasing salinities in FW fish shifted to SW showing 40.2 ng/mL in FDF to 10.3 ng/mL in FDS. However, glucose levels showed no significant differences among all experimental groups. Based on the information from this study, aquaculture of grey mullet might be applied or developed in freshwater due to its osmotic adaptation ability

    Prevalence and Genetic Structures of Streptococcus pneumoniae Serotype 6D, South Korea

    Get PDF
    To determine prevalence and genetic structures of new serotype 6D strains of pneumococci, we examined isolates from diverse clinical specimens in South Korea during 1991–2008. Fourteen serotype 6D strains accounted for 10.4% of serogroup 6 pneumococci from blood, sputum, nasopharynx, and throat samples. Serotype 6D strains consisted of 3 sequence types
    • 

    corecore