7 research outputs found

    Interferometric Fiber Optic Sensors

    Get PDF
    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair

    Chip-to-Chip Optical Link System Using an Optical Wiring Method

    No full text

    Compact Packaging of Optical and Electronic Components for On-Board Optical Interconnects

    No full text
    An optical interconnection plate was developed in order to achieve a compact and cost-effective interconnection module for an optical data link between chips on printed circuit boards. On the silica substrate, transmission lines and solder bumps are formed on the top surface of the substrate, and polymer waveguide array with 45 mirror planes is formed on the back side. This optical interconnection plate technique makes the alignment procedure quite simple and economical, because all the alignment steps between the optical components can be achieved in wafer processes and a high accuracy flip-chip bonding technique. We confirmed the sufficiently high coupling efficiency and low optical crosstalk using the simplified experimental setup. Flip-chip bonding of the vertical-cavity surface-emitting laser and photodiode arrays on the top surface of the optical interconnection plate was performed using indium bumps in order to avoid thermal damage of the polymer waveguide. The fully packaged optical interconnection plate showed an optical data link at rates of 455 Mb/s. Improvement of the mirror surface roughness and the mirror angle accuracy could lead to an optical link at higher rates. In addition, the interconnection system can be easily constructed by inserting the optical interconnection plate between the processing chips or data lines requiring optical links.This work was supported by the National Program for Tera-level Nanodevices, Ministry of Science and Technology, Korea. The flip-chip bonding study was supported in part by the Center for Electronic Packaging Materials (CEPM), the Science and Engineering Foundation, Korea
    corecore