499 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Reduced sympatho-vagal responses to orthostatic stress in drug-naive idiopathic restless legs syndrome

    Get PDF
    Study Objectives: Restless legs syndrome (RLS) is known to be a risk factor for cardiovascular disease. However, there are no electrophysiological biomarkers to assess this risk. This study aimed to evaluate heart rate variability (HRV) and cardiovascular reflexes in the supine and standing positions during wakefulness in patients with RLS. Methods: Fourteen drug-naive patients with RLS (12 women and 2 men, mean age, 42.14 ± 7.81 years) and 10 healthy control patients underwent tests for blood pressure, heart rate when in the supine and standing positions, and deep breathing and handgrip tests in controlled laboratory conditions. Data on 5-minute R-R intervals at each position were collected and analyzed for HRV. Results: Expected cardiovascular reflexes were within the normal range and were similar between the 2 groups. In HRV analysis, the normalized unit of the low-frequency component and the low-frequency/high-frequency ratio during standing were lower in patients with RLS than in the control patients. The low-frequency/high-frequency ratio responses during the change from the supine to the standing position were significantly reduced in patients with RLS (mean ± standard deviation, 2.94 ± 3.11; control patients: 7.51 ± 5.58; P =.042.) On Spearman rank correlation, questionnaires related to sleep problems were associated with the parameters of HRV. Conclusions: Patients with RLS showed reduced sympatho-vagal responses during the change from the supine to the upright position during wakefulness, and RLS-related sleep disturbance was a contributing factor for autonomic nervous system dysfunction. This case-control study showed a difference in HRV response to position change in a considerably small group of patients with RLS. The relevance of this finding is uncertain, but it may be worthy of further investigation in longitudinal studies on RLS and cardiovascular disease

    Emotional and Environmental Factors Aggravating Dream Enactment Behaviors in Patients with Isolated REM Sleep Behavior Disorder

    Get PDF
    OBJECTIVE: To identify emotional and environmental factors that aggravate dream enactment behaviors (DEBs) in isolated rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS: In this cross-sectional study, a total of 96 polysomnography-confirmed iRBD patients (mean age, 68.5 years; men, 68%) and their caregivers completed questionnaires regarding potential aggravating factors related to DEBs, including emotion/feelings (stress, anger, anxiety, depressive mood, fatigue, pain), food (alcohol, caffeine, overeating in the evening, fasting/hunger), activities and sleep patterns (strenuous exercise, sex before bed, conflict/fighting, sleep deprivation, oversleeping, sleeping away from home, watching TV before bed), weather/environmental factors (cloudy or rainy weather, heat, cold, noise) and medication (skipping medication, taking hypnotics). RESULTS: The patients reported that stress (61%) was the most aggravating factor for DEBs, followed by anxiety (56%), anger (51%), fatigue (49%), and watching TV before bed (46%). Similarly, the caregivers reported that these factors were most relevant to the aggravation of DEBs in the patients, although some factors were ranked differently. In the subgroup analyses, aggravating factors for DEBs did not differ by RBD symptom severity. Interestingly, the proportion of patients experiencing DEB aggravation by stress, anxiety and depressive mood was significantly higher in women than in men. Furthermore, depressed patients reported that stress and cloudy or rainy weather made DEBs worse than nondepressed patients. CONCLUSION: Our results suggest that DEBs in iRBD patients may be mainly aggravated by emotional factors. These negative effects appeared to be more prominent in female and depressed patients

    Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок

    Get PDF
    Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса

    Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus

    Get PDF
    Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion

    Working memory deficits in patients with idiopathic restless legs syndrome are associated with abnormal theta-band neural synchrony

    Get PDF
    Cognitive impairment, particularly prefrontal function, has been reported in patients with restless legs syndrome. However, working memory performance in patients with restless legs syndrome remains uncertain. The present study aimed to examine working memory performance in patients with restless legs syndrome by investigating electroencephalography theta-band oscillations within task-relevant brain regions and the synchronization among oscillations during a working memory task. Twelve female idiopathic patients with restless legs syndrome and 12 female healthy controls participated in this study. Nineteen-channel electroencephalography data were recorded while participants performed a Sternberg working memory task. We analysed event-related theta-band activity and interregional theta-band phase synchrony during the memory retrieval phase. The spatial pattern of theta-band phase synchrony was quantified using graph theory measures, including the clustering coefficient, characteristic path length, and small-world propensity. Considerable increases in theta-band activity and theta-band phase synchrony were observed at 600–700 ms in controls and at 650–750 ms in restless legs syndrome subjects after the probe item was presented. During this period, induced theta-band activity showed lower with borderline significance in the restless legs syndrome subjects than in the controls regardless of channel location (F4,88 = 3.92, p =.06). Theta-band phase synchrony between the frontal and posterior regions was significantly reduced in the restless legs syndrome subjects. Inefficiency in both global and local networks in the restless legs syndrome subjects was revealed by the decreased small-world propensity (t22 = 2.26, p =.03). Small-world propensity was negatively correlated with restless legs syndrome severity (r = −.65, p =.02). Our findings suggest that patients with restless legs syndrome have multiple deficits in cognitive processes, including attentional allocation, evaluation of incoming stimuli, and memory manipulation of encoded information during a working memory task. Abnormal local theta-band neural synchrony and global theta-band neural synchrony may underlie the neurophysiological mechanism of the working memory dysfunction associated with restless legs syndrome

    Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy

    Get PDF
    Purpose: To study the performance of a proposed deep learning-based autocontouring system in delineating organs at risk (OARs) in breast radiotherapy with a group of experts. Methods: Eleven experts from two institutions delineated nine OARs in 10 cases of adjuvant radiotherapy after breast-conserving surgery. Autocontours were then provided to the experts for correction. Overall, 110 manual contours, 110 corrected autocontours, and 10 autocontours of each type of OAR were analyzed. The Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to compare the degree of agreement between the best manual contour (chosen by an independent expert committee) and each autocontour, corrected autocontour, and manual contour. Higher DSCs and lower HDs indicated a better geometric overlap. The amount of time reduction using the autocontouring system was examined. User satisfaction was evaluated using a survey. Results: Manual contours, corrected autocontours, and autocontours had a similar accuracy in the average DSC value (0.88 vs. 0.90 vs. 0.90). The accuracy of autocontours ranked the second place, based on DSCs, and the first place, based on HDs among the manual contours. Interphysician variations among the experts were reduced in corrected autocontours, compared to variations in manual contours (DSC: 0.89–0.90 vs. 0.87–0.90; HD: 4.3–5.8 mm vs. 5.3–7.6 mm). Among the manual delineations, the breast contours had the largest variations, which improved most significantly with the autocontouring system. The total mean times for nine OARs were 37 min for manual contours and 6 min for corrected autocontours. The results of the survey revealed good user satisfaction. Conclusions: The autocontouring system had a similar performance in OARs as that of the experts’ manual contouring. This system can be valuable in improving the quality of breast radiotherapy and reducing interphysician variability in clinical practice

    Effect of isoflurane post-treatment on tPA-exaggerated brain injury in a rat ischemic stroke model.

    Get PDF
    BACKGROUND: Intravenous tissue-type plasminogen activator (tPA) is recognized as the standard treatment for ischemic stroke. However, its narrow therapeutic window and association with an increased risk of intracranial hemorrhage have required caution when used. In this context, several approaches are required to deal with the shortcomings of such a double-edged drug. Anesthetics are known to protect against ischemic reperfusion injury, and their protective role in ischemic post-conditioning is crucial for reducing ischemia-related injury. The aim of this study was to assess the effect of isoflurane post-treatment on intracranial hemorrhage and cerebral infarction after tPA treatment for transient cerebral ischemia. METHODS: Cerebral ischemia was modeled in male Sprague-Dawley rats (n = 32) by occluding the right middle cerebral artery for 1 h, followed by intravenous tPA administration. Rats were randomly divided into control and isoflurane post-treatment group, and isoflurane post-treatment group was post-treated by administering 1.5% isoflurane for 1 h from the start of reperfusion. Twenty-four h after reperfusion, neurobehavioral changes were assessed. The extent of cerebral infarction and intracranial hemorrhage were also assessed by quantification of infarction volume and cerebral hemoglobin concentration from brain tissue, respectively. RESULTS: Neurobehavioral testing showed better functional outcomes in the isoflurane post-treatment group than the control group. The extent of cerebral infarction and intracranial hemorrhage were both reduced in isoflurane post-treatment group compared to control group. CONCLUSIONS: Isoflurane post-treatment may mitigate infarction volume and intracranial hemorrhage in tPA-exaggerated brain injury. Our findings provide an encouraging novel approach for enhancing clinical outcomes in tPA-exaggerated brain injury

    Automated coronary artery calcium scoring in patients with breast cancer to assess the risk of heart disease following adjuvant radiation therapy

    Get PDF
    AIM: Validation of coronary artery calcium (CAC) scores as prognostic factors of acute coronary events (ACE) development in breast cancer patients are demanded. We investigated prognostic impact of CAC on ACE development with cardiac exposure to radiation. METHODS: We evaluated breast cancer patients with (n = 511) or without (n = 600) adjuvant radiotherapy (RT) between 2005 and 2013. CAC Agatston scores were analyzed using a deep-learning-based algorithm. Individual mean heart dose (MHD) was calculated, and no RT was categorized as 0 Gy. The primary endpoint was the development of ACE following breast surgery. RESULTS: In the RT and no-RT cohorts, 11.2% and 3.7% exhibited CAC >0, respectively. Over a 9.3-year follow-up period, the 10-year ACE rate was 0.7%. In the multivariate analysis, the CAC score was a significant risk factor for ACE (CAC >0 vs CAC = 0, 10-year 6.2% vs 0.2%, P < 0.001). In the subgroup with CAC >0, the 10-year ACE rates were 0%, 3.7%, and 13.7% for patients receiving mean heart doses of 0 Gy, 0-3 Gy, and >3 Gy, respectively (P = 0.133). Although CAC score was not predictive for non-ACE heart disease risk (P > 0.05), the 10-year non-ACE heart disease rates were 1.7%, 5.7%, and 7.1% for patients with CAC = 0 receiving MHD of 0 Gy, 0-3 Gy, and >3 Gy, respectively (P < 0.001). CONCLUSIONS: The CAC score was a significant predictor of ACE in patients with breast cancer. Although further studies are required, CAC score screening on simulation CT in patients undergoing breast RT can help identify those with high risk for ACE on a per-patient basis

    Brain regions associated with periodic leg movements during sleep in restless legs syndrome

    Get PDF
    The neural substrates related to periodic leg movements during sleep (PLMS) remain uncertain, and the specific brain regions involved in PLMS have not been evaluated. We investigated the brain regions associated with PLMS and their severity using the electroencephalographic (EEG) source localization method. Polysomnographic data, including electromyographic, electrocardiographic, and 19-channel EEG signals, of 15 patients with restless legs syndrome were analyzed. We first identified the source locations of delta-band (2-4 Hz) spectral power prior to the onset of PLMS using a standardized low-resolution brain electromagnetic tomography method. Next, correlation analysis was conducted between current densities and PLMS index. Delta power initially and most prominently increased before leg movement (LM) onset in the PLMS series. Sources of delta power at -4~-3 seconds were located in the right pericentral, bilateral dorsolateral prefrontal, and cingulate regions. PLMS index was correlated with current densities at the right inferior parietal, temporoparietal junction, and middle frontal regions. In conclusion, our results suggest that the brain regions activated before periodic LM onset or associated with their severity are the large-scale motor network and provide insight into the cortical contribution of PLMS pathomechanism
    corecore