45 research outputs found

    Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes?

    Get PDF
    Sorghum bicolor is a genetically diverse C4 monocotyledonous species, encompassing varieties capable of producing high grain yields as well as sweet types which accumulate soluble sugars (predominantly sucrose) within their stems to high concentrations. Sucrose produced in leaves (sources) enters the phloem and is transported to regions of growth and storage (sinks). It is likely that sucrose transporter (SUT) proteins play pivotal roles in phloem loading and the delivery of sucrose to growth and storage sinks in all Sorghum ecotypes. Six SUTs are present in the published Sorghum genome, based on the BTx623 grain cultivar. Homologues of these SUTs were cloned and sequenced from the sweet cultivar Rio, and compared with the publically available genome information. SbSUT5 possessed nine amino acid sequence differences between the two varieties. Two of the remaining five SUTs exhibited single variations in their amino acid sequences (SbSUT1 and SbSUT2) whilst the rest shared identical sequences. Complementation of a mutant Saccharomyces yeast strain (SEY6210), unable to grow up on sucrose as the sole carbon source, demonstrated that the Sorghum SUTs were capable of transporting sucrose. SbSUT1, SbSUT4, and SbSUT6 were highly expressed in mature leaf tissues and hence may contribute to phloem loading. In contrast, SbSUT2 and SbSUT5 were expressed most strongly in sinks consistent with a possible role of facilitating sucrose import into stem storage pools and developing inflorescences.Ricky J. Milne, Caitlin S. Byrt, John W. Patrick and Christopher P. L. Gro

    A Survey of Barley PIP Aquaporin Ionic Conductance Reveals Ca2+-Sensitive HvPIP2;8 Na+ and K+ Conductance

    Get PDF
    Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status

    Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage

    Get PDF
    Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis

    A single nucleotide substitution in TaHKT1;5-D controls shoot Na+ accumulation in bread wheat

    Get PDF
    Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars

    The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity

    Get PDF
    [EN] Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+/K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+/K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.We thank Dr Espen Granum for critically reading the manuscript, Maria Isabel Gaspar Vidal and Elena Sanchez Romero for technical assistance, the Instrumental Technical Service at EEZ-CSIC for DNA sequencing and ICP-OES mineral analysis and Michael O'Shea for proofreading the text. In addition, we thank Dr Ana P. Ortega who assisted in preliminary experiments. This work was supported by ERDF-cofinanced grants, AGL2010-17090 and AGL2013-41733-R (A.B.), AGL2015-64991-C3-3-R (V.M.) and AGL2014-56675-R (M.J.A.) from the Spanish "Ministerio de Economia, Industria y Competitividad'; CVI-7558, Proyecto de Excelencia, from Junta de Andalucia (A.B); and the Australian Research Council (ARC) for Centre of Excellence (CE14010008) and Future Fellowship (FT130100709) funding (M.G.). N.J-P. was supported by an FPI program BES-2011-046096 and her stay in M.G.'s lab by a short-stay EEBB-I-14-08682, both from the Spanish from "Ministerio de Economia Industria y Competitividad'. The authors have no conflict of interest to declare.Jaime-Perez, N.; Pineda Chaza, BJ.; García Sogo, B.; Atarés Huerta, A.; Athman, A.; Byrt, CS.; Olias, R.... (2017). The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell & Environment. 40(5):658-671. https://doi.org/10.1111/pce.12883S65867140

    Prospecting for Energy-Rich Renewable Raw Materials: \u3cem\u3eAgave\u3c/em\u3e Leaf Case Study

    Get PDF
    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition

    Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants

    No full text
    Silicon application can improve productivity outcomes for salt stressed plants. Here, we describe how strawberry plants respond to treatments including various combinations of salt stress and nano-silicon dioxide, and assess whether nano-silicon dioxide improves strawberry plant tolerance to salt stress. Strawberry plants were treated with salt (0, 25 or 50 mM NaCl), and the nano-silicon dioxide treatments were applied to the strawberry plants before (0, 50 and 100 mg L−1) or after (0 and 50 mg L−1) flowering. The salt stress treatments reduced plant biomass, chlorophyll content, and leaf relative water content (RWC) as expected. Relative to control (no NaCl) plants the salt treated plants had 10% lower membrane stability index (MSI), 81% greater proline content, and 54% greater cuticular transpiration; as well as increased canopy temperature and changes in the structure of the epicuticular wax layer. The plants treated with nano-silicon dioxide were better able to maintain epicuticular wax structure, chlorophyll content, and carotenoid content and accumulated less proline relative to plants treated only with salt and no nano-silicon dioxide. Analysis of scanning electron microscopic (SEM) images revealed that the salt treatments resulted in changes in epicuticular wax type and thickness, and that the application of nano-silicon dioxide suppressed the adverse effects of salinity on the epicuticular wax layer. Nano-silicon dioxide treated salt stressed plants had increased irregular (smoother) crystal wax deposits in their epicuticular layer. Together these observations indicate that application of nano-silicon dioxide can limit the adverse anatomical and biochemical changes related to salt stress impacts on strawberry plants and that this is, in part, associated with epicuticular wax deposition

    Câ‚„ plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective

    No full text
    The main feedstocks for bioethanol are sugarcane (Saccharum officinarum) and maize (Zea mays), both of which are C₄ grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C₄ plants have high light, water and nitrogen use efficiency, as compared with C₃ species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass ‘quality’, that is, the composition of the plant cell wall

    Phloem transport of resources

    No full text
    This chapter reviews the principles and concepts of resource transport in the phloem in general and then moves to describe the physiology of phloem translocation in sugarcane. The movement of resources through the phloem is interpreted through the Münch pressure flow hypothesis. The phloem transport rate is determined by magnitudes of pressure differences between the source and sink ends of the pathway and the phloem sap concentration of each transported nutrient. A description of the leaf structural framework in sugarcane is provided and the phloem pathways in sugarcane are dissected from loading of collection phloem in source leaves, transit through transport phloem, to release phloem where resources are unloaded into growth and storage sinks. Phloem conductivities in sugarcane, mechanisms of loading and unloading of solutes, and the environmental effects on phloem translocation are considered

    Living with salinity

    No full text
    Caitlin S. Byrt and Rana Munn
    corecore