1,444 research outputs found

    Gravity and non-gravity mediated couplings in multiple-field inflation

    Get PDF
    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.Comment: 14 pages, 3 figures, invited review for CQG issue on non-linear cosmolog

    Inhomogeneous non-Gaussianity

    Get PDF
    We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches the published versio

    An Application of Feynman-Kleinert Approximants to the Massive Schwinger Model on a Lattice

    Get PDF
    A trial application of the method of Feynman-Kleinert approximants is made to perturbation series arising in connection with the lattice Schwinger model. In extrapolating the lattice strong-coupling series to the weak-coupling continuum limit, the approximants do not converge well. In interpolating between the continuum perturbation series at large fermion mass and small fermion mass, however, the approximants do give good results. In the course of the calculations, we picked up and rectified an error in an earlier derivation of the continuum series coefficients.Comment: 16 pages, 4 figures, 5 table

    Deep recurrent networks predicting the gap evolution in adiabatic quantum computing

    Get PDF
    One of the main challenges in quantum physics is predicting efficiently the dynamics of observables in many-body problems out of equilibrium. A particular example occurs in adiabatic quantum computing, where finding the structure of the instantaneous gap of the Hamiltonian is crucial in order to optimize the speed of the computation. Inspired by this challenge, in this work we explore the potential of deep learning for discovering a mapping from the parameters that fully identify a problem Hamiltonian to the full evolution of the gap during an adiabatic sweep applying different network architectures. Through this example, we find that a limiting factor for the learnability of the dynamics is the size of the input, that is, how the number of parameters needed to identify the Hamiltonian scales with the system size. We demonstrate that a long short-term memory network succeeds in predicting the gap when the parameter space scales linearly with system size. Remarkably, we show that once this architecture is combined with a convolutional neural network to deal with the spatial structure of the model, the gap evolution can even be predicted for system sizes larger than the ones seen by the neural network during training. This provides a significant speedup in comparison with the existing exact and approximate algorithms in calculating the gap

    Local non-Gaussianity from inflation

    Get PDF
    The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum Gravity special issue on non-linear and non-Gaussian cosmological perturbation

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    Large non-Gaussianity from two-component hybrid inflation

    Full text link
    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f_NL, tau_NL and a small g_NL. For certain parameter values we can satisfy tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos corrected, matches published versio

    The Trispectrum in the Multi-brid Inflation

    Full text link
    The trispectrum is at least as important as the bispectrum and its size can be characterized by two parameters Ï„NL\tau_{NL} and gNLg_{NL}. In this short paper, we focus on the Multi-brid inflation, in particular the two-brid inflation model in arXiv.0805.0974, and find that Ï„NL\tau_{NL} is always positive and roughly equals to (65fNL)2({6\over 5}f_{NL})^2 for the low scale inflation, but gNLg_{NL} can be negative or positive and its order of magnitude can be the same as that of Ï„NL\tau_{NL} or even largerComment: 12 pages; minor correction, refs added; further refs added, version for publication in JCA

    Trispectrum from Ghost Inflation

    Full text link
    Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The bispectrum is known to have a large contribution at the wavenumbers forming an equilateral triangle and the corresponding nonlinear parameter fNLequilf_{NL}^{equil} is typically of order O(102)O(10^2). In this paper we calculate trispectrum from ghost inflation and show that the corresponding nonlinear parameter Ï„NL\tau_{NL} is typically of order O(104)O(10^4). We investigate the shape dependence of the trispectrum and see that it has some features different from DBI inflation. Therefore, our result may be useful as a template to distinguish ghost inflation from other models of inflation by future experiments.Comment: 25 pages, 10 figure

    Local non-Gaussianity from rapidly varying sound speeds

    Get PDF
    We study the effect of non-trivial sound speeds on local-type non-Gaussianity during multiple-field inflation. To this end, we consider a model of multiple-field DBI and use the deltaN formalism to track the super-horizon evolution of perturbations. By adopting a sum separable Hubble parameter we derive analytic expressions for the relevant quantities in the two-field case, valid beyond slow variation. We find that non-trivial sound speeds can, in principle, curve the trajectory in such a way that significant local-type non-Gaussianity is produced. Deviations from slow variation, such as rapidly varying sound speeds, enhance this effect. To illustrate our results we consider two-field inflation in the tip regions of two warped throats and find large local-type non-Gaussianity produced towards the end of the inflationary process.Comment: 30 pages, 7 figures; typos corrected, references added, accepted for publication in JCA
    • …
    corecore