129 research outputs found

    Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116948/1/ecy20139471636.pd

    A Meta-Analysis Of Resource Pulse-Consumer Interactions

    Get PDF
    Resource Pulses are infrequent, large-magnitude, and short-duration events of increased resource availability. They include a diverse set of extreme events in a wide range of ecosystems, but identifying general patterns among the diversity of pulsed resource phenomena in nature remains an important challenge. Here we present a meta-analysis of resource pulse-consumer interactions that addresses four key questions: (1) Which characteristics of pulsed resources best predict their effects on consumers? (2) Which characteristics of consumers best predict their responses to resource pulses? (3) How do the effects of resource Pulses differ in different ecosystems? (4) What are the indirect effects of resource pulses in communities\u27? To investigate these questions, we built a data set of diverse Pulsed resource-consumer interactions from around the world, developed metrics to compare the effects of resource pulses across disparate systems, and conducted multilevel regression analyses to examine the manner in which variation in the characteristics of resource pulse-consumer interactions affects important aspects Of Consumer responses. Resource pulse magnitude, resource trophic level, resource Pulse duration, ecosystem type and subtype, consumer response mechanisms, and consumer body mass were found to be key. explanatory factors predicting the magnitude, duration, and timing of consumer responses. Larger consumers showed more persistent responses to resource pulses, and reproductive responses were more persistent than aggregative responses. Aquatic systems showed shorter temporal lags between peaks of resource availability and consumer response compared to terrestrial systems, and temporal lags were also shorter for smaller consumers compared to larger consumers. The magnitude of consumer responses relative to their resource pulses was generally smaller for the direct consumers of primary resource pulses, compared to consumers at greater trophic distances from the initial resource pulse. In specific systems, this data set showed both attenuating and amplifying indirect effects. We consider the mechanistic processes behind these patterns and their implications for the ecology of resource pulses

    Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts

    Get PDF
    The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales [1-7]. Reconciling the threat of global biodiversity loss [2, 4, 6-9] with recent evidence of stability at fine spatial scales [10,11] is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions [2,4,6-9] but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context

    Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas)

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Houskeeper, H. F., Rosenthal, I. S., Cavanaugh, K. C., Pawlak, C., Trouille, L., Byrnes, J. E. K., Bell, T. W., & Cavanaugh, K. C. Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas). Plos One, 17(1), (2022): e0257933, https://doi.org/10.1371/journal.pone.0257933.Giant kelp populations that support productive and diverse coastal ecosystems at temperate and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally uneven, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp using satellite imagery requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery (8 images spanning the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline, and including all relevant sensors). Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017–2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.This work was funded by the National Aeronautics and Space Administration as part of the Citizen Science for Earth Systems Program (https://earthdata.nasa.gov/esds/competitive-programs/csesp) with grant #80NSSC18M0103 (awarded to JEKB), which also provided salary to HFH, and by the National Science Foundation through the Santa Barbara Coastal Long-Term Environmental Research (https://sbclter.msi.ucsb.edu) program with grants #OCE 0620276 and 1232779. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The functional role of producer diversity in ecosystems

    Get PDF
    Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world\u27s biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems

    Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Get PDF
    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity\u27s effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity\u27s effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups

    From fat droplets to floating forests: cross-domain transfer learning using a PatchGAN-based segmentation model

    Full text link
    Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided by the Zooniverse.org citizen science platform. As the range of projects, task types and data rates increase, acceleration of model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning (TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline cases when using >75% of the original training sample size. The COCO-based TL model generally performs better than the FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.Comment: 5 pages, 4 figures, accepted for publication at the Proceedings of the ACM/CIKM 2022 (Human-in-the-loop Data Curation Workshop
    corecore