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Abstract

Giant kelp populations that support productive and diverse coastal ecosystems at temperate

and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions

as well as direct human impacts. Observations of giant kelp forests are spatially and tempo-

rally uneven, with disproportionate coverage in the northern hemisphere, despite the size

and comparable density of southern hemisphere kelp forests. Satellite imagery enables the

mapping of existing and historical giant kelp populations in understudied regions, but auto-

mating the detection of giant kelp using satellite imagery requires approaches that are

robust to the optical complexity of the shallow, nearshore environment. We present and

compare two approaches for automating the detection of giant kelp in satellite datasets: one

based on crowd sourcing of satellite imagery classifications and another based on a deci-

sion tree paired with a spectral unmixing algorithm (automated using Google Earth Engine).

Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas

Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive

giant kelp ecosystems. The performance of each method is evaluated by comparing the

automated classifications with a subset of expert-annotated imagery (8 images spanning

the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline,

and including all relevant sensors). Using the remote sensing approaches evaluated herein,

we present the first continuous timeseries of giant kelp observations in the FLK region using

Landsat imagery spanning over three decades. We do not detect evidence of long-term

change in the FLK region, although we observe a recent decline in total canopy area from

2017–2021. Using a nitrate model based on nearby ocean state measurements obtained

from ships and incorporating satellite sea surface temperature products, we find that the

area of giant kelp forests in the FLK region is positively correlated with the nitrate content

observed during the prior year. Our results indicate that giant kelp classifications using citi-

zen science are approximately consistent with classifications based on a state-of-the-art

automated spectral approach. Despite differences in accuracy and sensitivity, both

approaches find high interannual variability that impedes the detection of potential long-term
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changes in giant kelp canopy area, although recent canopy area declines are notable and

should continue to be monitored carefully.

Introduction

Kelp forests make up an important coastal habitat that provides productive and dynamic biotic

structure, supports diverse marine ecosystems and fisheries, and supplies resources to coastal

communities [1, 2]. These coastal ecosystems are extensive across temperate to subpolar lati-

tudes of both hemispheres. The largest and most widely distributed canopy-forming kelp is

giant kelp, Macrocystis pyrifera. Giant kelp extends along the west coast of North America and

throughout much of the southern hemisphere, including along the South American coastlines

of Peru, Chile, and Argentina, the southern margins of the African and Australian continents,

and various island chains situated at southern temperate and subantarctic latitudes [3, 4].

The global distribution of giant kelp is regulated by biotic and abiotic factors, including: the

depth and quality of the benthic substrate; the temperature, clarity, and nutrient content of the

water; the magnitude and direction of wave energy; the size and connectivity of kelp popula-

tions; and the abundance of grazers, notably sea urchins [5–7]. Giant kelp population

responses to specific environmental drivers are nonlinear, and the relative importance of biotic

and abiotic controls may vary seasonally and regionally, even across small distances due in

part to complex variations in coastline structure and exposure [8, 9]. The sensitivity of giant

kelp to environmental drivers leads to high variability in kelp forest abundance across a variety

of space and time scales [6]. This sensitivity also makes kelp ecosystems especially vulnerable

to changes in environmental conditions. As a result, regular monitoring is required to detect

potential changes in the distribution of giant kelp corresponding with environmental changes,

and long-term data sets are needed to separate trends from natural background variability

[10].

Global and regional changes in kelp forest distribution

Giant kelp forest timeseries observations are geographically uneven, with more research focus-

ing on the northern hemisphere (especially southern Californian waters) [3]. Two recent sur-

veys of kelp forests at the South Atlantic Tristan da Cunha Islands and at the southern tip of

Chile reported highly dense kelp forests with ecosystem qualities comparable to those of the

well-studied Marine Protected Areas (MPAs) of southern California [11, 12]. The forests of

the South Atlantic region comprise a significant fraction of the global giant kelp distribution; a

subset of key southern hemisphere ecosystems that included Tierra del Fuego, the Falkland

Islands (Islas Malvinas; FLK), and the South Georgia Islands was recently estimated to com-

prise approximately 41% of the global coverage of giant kelp [4]. Despite the significant cover-

age of giant kelp in the South Atlantic, there are insufficient observations from many southern

hemisphere regions—including FLK—to determine whether South Atlantic forests have exhib-

ited long term trends related to climate change [13, 14].

The giant kelp forests of the FLK region, which consists of an archipelago situated approxi-

mately 600 km east of Tierra del Fuego, are believed to be one of the largest remaining, rela-

tively undisturbed kelp forest ecosystems on the planet [15]. The economic value of these

forests was recently estimated at £2.69 billion based on carbon sequestration, coastal protec-

tion, and other ecosystem services [16]. Regions like FLK—which do not support large human

population centers, have not recently undergone large changes in land-use practices, and have
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relatively low levels of local pollution or resource extraction—are useful for examining the

impacts of climate change, because the effects of local environmental stressors are reduced.

Despite relatively few modern observations, giant kelp canopies in FLK were among the first

kelp forests to be documented by naturalists during the 19th and early 20th centuries [15] and

were the subject of a series of physiological and ecological studies during the latter portion of

the 20th century [17–20]. A summary of previous giant kelp observations of the FLK region

was recently provided in Mora-Soto et al., (2021) [15]. An update on the status of giant kelp

forests within the FLK region—based on continuous and spatially resolved kelp canopy obser-

vations—is timely given uncertainty in the resilience of remote South Atlantic kelp

populations.

Advances in remote observations of kelp ecosystems

Detecting robust long-term change in kelp abundance requires persistent, regular monitoring

of kelp forest ecosystems, which is only feasible on small spatial scales when using local sur-

veys, e.g., within a Southern California ecological reserve [21]. For less well-characterized

regions, comparison of present conditions with those documented in historical surveys allows

for useful point comparisons but cannot resolve interannual variability, the magnitude of

which can often overshadow long-term changes. Remote observations of kelp forests are possi-

ble based on the high reflectance of near-infrared (NIR) light by kelp suspended near the

water’s surface. Kelp observations obtained using satellite imagery improve the temporal and

spatial coverage of kelp forest ecosystem monitoring [22] and enable historical reconstruction

of kelp canopy area spanning multiple decades [10]. Satellite remote sensing has been used to

assess environmental drivers [9], understand the importance of decadal-scale processes in the

regulation of kelp forests [10], and detect long-term trends [23].

As the proliferation of ocean-viewing, high-resolution satellite imagery has greatly

increased the volume of data relevant to observing kelp canopies, improvements in image pro-

cessing and automation are needed to apply satellite observations across broader geographic

areas. Recent technological developments have eased image processing requirements. For

example, the Google Earth Engine (GEE) platform facilitates large-scale data analysis through

cloud computing [24]. A global map of kelp forest canopy (including the FLK region) was

recently generated by processing curated, satellite imagery within the GEE cloud platform [4].

Advances in processing satellite datasets have also resulted from novel approaches based on

crowd sourcing, in which citizen scientists can accomplish simple, repetitive tasks that would

otherwise be too time-consuming for a small research team to complete [25], e.g., manually

annotating large sets of satellite imagery. These citizen science annotations can also be used as

training and validation data for automated machine-learning classification approaches. This

concept of including public effort in scientific research also connects the general public with

teams of scientists, thereby facilitating general science literacy and engagement [26, 27]. In the

field of environmental science, crowd sourcing has been utilized for decades, but has also

faced concerns regarding the quality and consistency of crowd-sourced data products [28].

These concerns can be mitigated to some extent through optimizing the user-interface, clean-

ing the data using post-processing tools, expanding the platform’s accessibility, and improving

communication between scientists and participants [29].

Kelp canopy floating at the ocean’s surface is often clearly distinguishable to an unskilled

human observer, especially for pseudo- or false-color imagery in which the NIR signal is

emphasized. Crowd-sourced satellite imagery kelp classifications were generated by the Float-

ing Forests (FF) project (floatingforests.org) beginning in 2014 using the Zooniverse citizen

science web portal (zooniverse.org). Based on validation data from southern California, the FF

PLOS ONE Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas)

PLOS ONE | https://doi.org/10.1371/journal.pone.0257933 January 6, 2022 3 / 20

https://doi.org/10.1371/journal.pone.0257933


kelp canopy data products have recently been shown to be comparable in quality to manual,

expert annotations when filtered by consensus (a minimum ratio of positive annotations for

an individual pixel) [30]. The FF project has expanded geographically, and as of the writing of

this paper, the kelp canopy annotations completed through the FF project span the coastal

regions of California, the western edge of Tasmania, and the FLK archipelago. In FLK, over

433 images have presently been classified by citizen scientists.

In this paper, we present the first continuous timeseries of giant kelp observations in the

FLK region using over three decades of Landsat imagery. We derived canopy area estimates

from imagery based on multiple classification approaches, including citizen science classifica-

tions obtained through the FF project, as well as a fully-automated, two-part analytical

approach, which pairs a binary decision tree with a spectral mixing model [10]. The addition

of the spectral mixing model allows for assessment of partially covered pixels and has been

shown to improve detection for canopies with a smaller surface footprint [31]. We evaluated

the automated and crowd-sourced kelp classifications using an expert-annotated imagery sub-

set, and we tested for long-term changes in canopy distribution using multisensor timeseries

of the FLK region. Finally, we assessed potential environmental drivers of variability in FLK

giant kelp populations using independent data products of sea surface temperature (SST) and

nitrate-temperature relationships approximated from nearby oceanographic surveys.

Materials and methods

Site description

The FLK region constitutes an archipelago of over 700 south Atlantic islands. The region’s two

largest islands, West and East Falkland, are separated by Falkland Sound, which is oriented

approximately southwest to northeast along its major axis. The archipelago is situated in a

zone of high wave energy, with maximum wave heights occurring in the austral winter months

and approaching from the west [32]. Coastline morphology is strongly affected by wind and

wave exposure, with high rates of erosion along the western, windward coastline of many

islands, and sediment deposits or formation of dunes more common along the eastern, lee-

ward coastlines [33].

The ocean state of the FLK region is strongly influenced by the flow of the Falkland Current

(FC), which supplies cold (*7˚C) water originating in the Antarctic Circumpolar Current

(ACC), shown in Fig 1. To the north of FLK, between approximately 30˚ and 50˚, the FC

forms a confluence with warmer (*19˚C) and more saline waters of the Brazil Current (BC)

[32]. Tidal cycles in FLK are semi-diurnal, with ranges of approximately 1m [32], and the

region’s subtidal zone supports two species of sea urchins that graze kelp [34].

Giant kelp is the dominant canopy-forming kelp within the FLK region, with large beds

surrounding the island archipelago [17]. Other canopy-forming genera in the FLK region are

primarily found in very shallow habitats or as a subsurface canopy interspersed within or on

the edges of giant kelp beds [15, 34]. For example, Lessonia spp. frequently forms a sub-canopy

that rarely reaches the surface except in very shallow waters, and the southern bull kelp Durvil-
laea antarctica is generally restricted to rocky shore margins or tidally submerged reefs. Giant

kelp fronds in FLK exhibit rapid turnover, with a maximum estimated frond lifespan of one

year [18], and individuals in nearshore beds have been found to experience nitrogen limitation

in summer months [17]. Recent genetic analyses have revealed that giant kelp populations in

the FLK region share commonalities with populations of central Chile, suggesting that giant

kelp arrived in FLK prior to a recolonization event of southern Chile [35].
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Satellite mapping of kelp dynamics

We obtained satellite remote sensing observations of the FLK region using available Landsat 5,

7, and 8 imagery. We extracted kelp canopy area from the Landsat imagery using a citizen-sci-

ence approach [30], as well as the current state-of-the-art automated method [10]. The two dif-

ferent approaches provided redundancy and also allowed us to compare each method using

manual, expert classifications as a validation dataset. Based on the validation results presented

Fig 1. Map of Malvinas or Falkland Islands. The location and coastline of the Falkland Islands (Islas Malvinas) are shown at increasing scale within

panels (A), (B), and (C). Within panel (B), the generalized location and direction of the Antarctic Circumpolar Current (ACC) and the Falkland

Current (FC) are indicated in blue, and the Brazil Current (BC) is indicated in red.

https://doi.org/10.1371/journal.pone.0257933.g001
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in this study, we applied the best performing method to examine variability in kelp abundance

across FLK from 1985–2021. The satellite imagery and giant kelp data products based on

expert, automated, and citizen science classifications are described in more detail below.

Expert kelp classification of Landsat imagery. Atmospherically corrected surface reflec-

tance observations of the FLK region were obtained from the Landsat satellites via the United

States Geological Survey (USGS) Earth Explorer portal (earthexplorer.usgs.gov). Scenes were

downloaded from Landsat Collection 1 for the Thematic Mapper (TM), Enhanced Thematic

Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors, which were carried aboard

Landsat platforms 5, 7, and 8, respectively. Kelp-containing pixels (30m spatial resolution)

were manually classified by a single, skilled technician using pseudo-color (NIR/red/green)

imagery for a subset of eight Landsat scenes, cumulatively spanning over 2,700 km of coastline.

The manually annotated scenes were primarily cloud-free and with similar representation

from each sensor (2 TM, 3 ETM+, and 3 OLI), but were otherwise chosen to be representative

of the broader dataset, with dates spanning: a) the austral spring, summer, and fall (winter

observations were avoided due to solar zenith angle); b) the majority (1999 − 2018) of the con-

tinuous timeseries range (1997 − 2021); and c) a 1.6σ range in the El Niño Southern Oscillation

(ENSO), using the Multivariate ENSO Index (MEI) version 2 (psl.noaa.gov/enso/mei). Manual

classifications were compared to automated and citizen science classifications by evaluating

the number of pixels identified as kelp for the same Landsat scenes, with pixels partitioned

into bins corresponding to the nearest 1 km FLK coastline segment.

Automated kelp classifications based on a spectral mixture analysis. Atmospherically

corrected surface reflectance products (tier 1) were obtained for Landsat sensors TM, ETM+,

and OLI from the GEE public data catalogue. Within the GEE code editor (code.earthengine.

google.com), scenes were masked for land and clouds, and kelp-containing pixels were identi-

fied by following a binary classification scheme described in Bell et al., 2020 [10]. The frac-

tional kelp coverage within each kelp-containing pixel was then estimated based on Bell et al.,

2020 [10] using Multiple Endmember Spectral Mixture Analysis (MESMA)—a technique for

estimating fractional contributions of pure spectral endmembers (e.g., water, glint, or kelp)

from individual bulk spectra based on a linear mixing model [36]. The water end-members

were derived from the imagery, while a single kelp end-member was chosen a priori.
The data products were then post-processed in Matlab (R2020a) by masking pixels in loca-

tions that were characterized as follows: located less than 120m or greater than 4.5 km from

the coastline, defined by [37]; containing kelp canopy in less than 2% of the timeseries; con-

taining fractional kelp coverage assignments above 300%; indicating strong negative (< −0.25)

correlation to tidal cycles estimated from sea surface pressure observations at Port Stanley

[38], which were accessed through the University of Hawaii Sea Level Center (uhslc.soest.

hawaii.edu); and/or indicating low (< 0.2) correlation with nearby (within 5 km) patches. Fil-

tering the automated classifications beyond the post-processing criteria outlined above was

not performed, since the objective of our paper is in part to evaluate the accuracy of an auto-

mated remote approach. The fractional cover datasets were converted to binary timeseries

(i.e., presence/absence)—based on a fractional coverage threshold of 13%—in order to facili-

tate comparisons with the expert and citizen science classifications. Previous work has shown

that spectral response functions have improved intersensor consistency for non-binary, per-

cent-coverage data products [10]. However, spectral response functions were not applied here

because inter-sensor differences were not detected for the automated data products, which

were binary, i.e., presence-absence rather than fractional. This dataset of binary kelp canopy

classifications was re-sampled at seasonal or annual (July-June) intervals using the mean and is

hereafter referred to as DTM. The number of observation days in the annual DTM dataset is

shown in S1 Table.

PLOS ONE Automated satellite remote sensing of giant kelp at the Falkland Islands (Islas Malvinas)

PLOS ONE | https://doi.org/10.1371/journal.pone.0257933 January 6, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0257933


Another automated approach based on the difference between NIR and red satellite reflec-

tance observations was also processed within the GEE code editor using open-access code

(github.com/BiogeoscienceslabOxford/kelp_forests). Atmospherically corrected surface reflec-

tance products were obtained from the GEE public data repository for the MultiSpectral

Imager (MSI) aboard the European Space Agency satellite Sentinel-2. Differences between

NIR and red reflectance products were converted to binary presence/absence kelp data prod-

ucts based on predetermined thresholds [4]. The open-access code was adjusted to produce

annual composites, and this dataset is hereafter referred to as KD. The KD dataset is included

for visual comparisons but is not included in the validation analysis, since the algorithm was

not applicable to the Landsat imagery on which the manual, expert classifications were

performed.

Citizen science kelp classifications. Crowd-sourced satellite kelp classifications were

obtained for TM, ETM+, and OLI Landsat imagery (USGS tier 1) through the FF project (floa-

tingforests.org), in which scenes were spatially subset into smaller tiles (�2.25 km2), and

color-stretched tile images (red/green/blue) were annotated by citizen scientists through the

Zooniverse citizen science web portal (zooniverse.org), shown in Fig 2. Each tile was viewed

by 15 unique, unskilled observers during the period 2014 to 2020, with classifications recorded

as shape files. Annotated tiles were combined as rasterized (10m resolution) data composites

containing the summed classifications for each pixel within each spatially subset tile.

Tiles were then post-processed using Matlab by rasterizing the shapefiles and then convert-

ing to binary using a consensus classification threshold of 8. The consensus threshold was

selected based on visual inspection of scenes as well as optimization of the Matthew’s Correla-

tion Coefficient—a metric that is relatively insensitive to class imbalance [39]—in comparison

to expert-annotated imagery. Binary classifications that were on land or that were greater than

4.5 km from the nearest coastline were discarded. In general, oceanic consensus classifications

Fig 2. Zooniverse citizen science web portal. The Zooniverse interface in which citizen scientists indicate kelp canopy

locations for the Floating Forests project. A representative tile viewing a portion of East Falkland is shown.

https://doi.org/10.1371/journal.pone.0257933.g002
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were included without additional filtering, since our objective is in part to evaluate the accu-

racy of the citizen science data products. However, one tile was determined to contain primar-

ily drifting kelp or marine debris and was manually removed from the dataset during post-

processing. Binary rasters were re-sampled to a 30m grid and to seasonal or annual intervals

using the mean. Seasonal or annual composites with insufficient data (less than 25%) were

removed from the time series analysis. This dataset of binary kelp canopy classifications based

on the Floating Forest data set and the consensus threshold of 8 is hereafter referred to as FF8.

The number of observations days in the annual FF8 dataset is shown in S1 Table.

Ocean state estimates

Monthly, 9 km composites of sea surface temperature (SST) were obtained from the NASA

Ocean Color portal (accessed through oceancolor.gsfc.nasa.gov) using observations from the

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite.

Observations spanning 2002 to 2021 were averaged within 62˚ to 57˚W and 50˚ to 53˚S.

Oceanographic observations of nitrate and temperature were obtained for the same region

from the World Ocean Atlas—accessed through the National Centers for Environmental

Information (ncei.noaa.gov). A synthetic nitrate proxy was modeled as a function of tempera-

ture using linear regression, with estimated uncertainty (RMSE) of 4.6μmol/kg, or 13.1% of

the range in nitrate measured in situ (S1 Fig).

Results

We compared automated and citizen science approaches for estimating giant kelp canopy cov-

erage and evaluated the performance of each method for the FLK region based on validation

using our full subset of manually classified images. We developed kelp canopy time series for

the FLK region and tested for associations between giant kelp area and environmental parame-

ters or climate indices using the best performing approach. Finally, we investigated regional

relationships by aggregating kelp canopy data products to the nearest 1 km coastline segments.

Evaluation of kelp canopy data products

Kelp classifications from the DTM automated approach matched the expert manual classifica-

tions better than the classifications from the FF8 citizen science consensus. In Fig 3, kelp can-

opy distributions estimated using DTM data products from separate Landsat sensors OLI and

ETM+ are shown in panels C and D, respectively. The FF8 citizen science classifications are

shown in panel E and indicate decreased spatial granularity as well as decreased sensitivity to

small beds. KD data products generated from Sentinel-2 (MSI) imagery are shown in panel F

and indicate slightly less sensitivity than the DTM approach, although the DTM and KD meth-

ods are approximately similar in shape and in total coverage.

The automated DTM and KD approaches were based on spectral analysis and were not

retained for near-shore pixels (i.e., within 120m or approximately 4 pixel-widths from the

coastline), where bottom reflectance or the additions of organic or inorganic particles (e.g.,

through resuspension or terrestrial inputs) challenge atmospheric correction [40] and elevate

signals in the NIR domain [41]. In some instances, nearshore remote sensing challenges are

anticipated to be less problematic when spatial information is also considered (e.g., the trajec-

tory of a runoff plume), and so the FF8 annotations were retained within the nearshore zone.

Continued research is needed in order to better understand the reliability of spectral methods

like DTM and KD for measuring nearshore canopy. The FLK region, in general, contains rela-

tively wide giant kelp canopies that extend away from the shore [15], and improvements for
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the nearshore zone are particularly important in regions where kelp predominantly forms

fringing canopies closer to the shoreline.

Quantitative comparison of the DTM and FF8 methods was performed by aggregating

kelp-containing pixels to their nearest 1 km coastline segment and comparing the number of

classifications within each segment with the corresponding number of expert classifications.

Validation results are presented in Fig 4 using all available manually classified imagery, with

the DTM approach using the TM, ETM+, and OLI sensors shown in panels A, B, and C,

respectively. Panel D shows the FF8 approach using the TM and OLI sensors overlaid, due to

the lower total number of available matchups. No ETM+ matchups were available for coinci-

dent FF8 data products and expert-annotated imagery.

Across all sensors, the DTM approach produced higher R2 and lower RMSE, expressed as a

percentage of the range in the expert-annotated coastline aggregates, compared to the FF8 data

products. For consistency, the challenging nearshore pixels that were masked for the DTM

data products were also removed in the validation of the FF8 aggregates. Biases of the FF8 data

products within individual matchup scenes were greater in magnitude than those of the DTM

data products, but occurred in both directions across scenes. Optimizing sensitivity and

Fig 3. Comparison of kelp classification methods. A pseudo-color scene of East Falkland is shown in the upper left panel with expert kelp

classifications indicated in green. The figure inlays show various automated and manual methods, as well as non-annotated imagery, for a smaller

spatial region, as follows: (A) manual classifications performed on a single OLI scene by an expert technician; (B) pseudo-color (NIR/red/green) image;

(C) DTM automated classifications of a single OLI scene; (D) DTM automated classifications of a single ETM+ scene; (E) FF8 consensus classifications

of OLI imagery during 2017; and (F) KD automated classifications of MSI imagery during 2017.

https://doi.org/10.1371/journal.pone.0257933.g003
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specificity for the citizen science classifications is possible through adjusting the consensus

threshold. We found that a consensus threshold of 8 was reasonable within the FLK region,

but another study recently found that a consensus threshold of 4 (i.e., more sensitivity) was

more appropriate based on annotated imagery of Southern California waters [30]. Different

optimization results may be due in part to the increased width and offshore extent of the giant

kelp beds in FLK, particularly along the eastern coastline. The different optimization results

may also be due to differences in image processing, because the earlier images available to

Rosenthal et al., (2018) [30] were not atmospherically corrected. Satellite data processing levels

were consistent within each method for this study.

Interannual variability in kelp canopy extent (1985–2021)

Timeseries of total FLK kelp canopy coverage derived from the FF8 and DTM approaches

indicate that the spectral and citizen science approaches show similar temporal patterns and

trends. Annual composites of total kelp canopy area are shown in Fig 5, with DTM data prod-

ucts shown for individual sensors TM, ETM+, and OLI in red, blue, and orange, respectively,

and for a multisensor composite in gray. FF8 data products are shown as an annual,

Fig 4. Validation of automated and citizen science kelp classifications. Validation scatterplots for expert (vertical)

and automated or citizen science consensus (horizontal) classifications of pixels with kelp present per 1 km of

coastline, as follows: (A) validation of TM matchups using DTM; (B) validation of ETM+ matchups using DTM; (C)

validation of OLI matchups using DTM; and (D) validation of OLI and TM matchups using FF8.

https://doi.org/10.1371/journal.pone.0257933.g004
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multisensor composite in green due to the lower amount of available observations. Datasets

for individual sensors were combined as multisensor composites based on a weighted mean

that incorporated the number of observations available from each sensor within a single year

(see S1 Table). The earliest DTM observations are from 1985, but coverage during this year

only includes the western portion of FLK.

We did not detect significant long-term linear trends in kelp canopy using either the DTM

data products spanning 1985–2021 (P = 0.28) or the FF8 data products spanning 1987–2018

(P = 0.09). Recent declines in kelp coverage were visible for the full FLK region during 2017–

2020, but the magnitude of this recent decline is similar to the range observed in the DTM

timeseries between 1985 and 1987. We also tested for regional kelp canopy trends by evaluat-

ing timeseries of DTM data products aggregated to their nearest 1 km coastline segments.

Considering timeseries results from each 1 km segment by coastline orientation and position,

we did not detect cohesive spatial structure for trends in kelp canopy (S2 Fig). Approximately

3.9% and 8.8% of the 1 km coastline partitions indicated significant (P < 0.01) positive and

negative linear trends, respectively.

We also evaluated potential effects of basin-scale climate indices by testing for lag correla-

tion with annual and seasonal DTM data products. Limiting the lag in the climate index to one

year (i.e., because of the rapid turnover expected for giant kelp populations), no significant

correlation was detected with MEI or other indices.

Using a synthetic nitrate model described in S1 Fig, we found that annual composites of

kelp canopy area were positively correlated to nitrate concentration when nitrate was lagged

by one year, with r = 0.65 (P < 0.01) for the combined FLK region. Correlations derived

between canopy area and synthetic nitrate within individual, 1 km coastline subsets indicated

that positive associations between kelp and lagged nitrate were consistent across most FLK

coastline segments, shown in Fig 6. Similar results were obtained for temperature because of

Fig 5. Timeseries of kelp canopy extent for the combined FLK region. Annual mean total canopy area within the FLK region is shown for DTM data

products using TM (red), ETM+ (blue), and OLI (yellow) individual sensors, as well as a multisensor composite (gray line). FF8 data products are

scaled to a separate y-axis based on the percentage of applicable pixels observed in an individual year, due to spatial patchiness in the FF8 coverage

through time, and are presented as a multisensor composite (green). DTM observations in 1985 only include the western portion of FLK. Yearly

intervals correspond to July of the preceding calendar year through June of the listed calendar year.

https://doi.org/10.1371/journal.pone.0257933.g005
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the linear model used to estimate synthetic nitrate, but only nitrate is presented because tem-

peratures in FLK are not anticipated to reach levels associated with thermal stress in giant kelp.

Areas where nitrate correlations were either negative or were not found to be significant

(shaded purple or gray, respectively) were typically in regions with very low or ephemeral kelp

canopy coverage, e.g., inland seas such as the San Carlos waters, shown in the upper right sub-

set panel. Some southern portions of West Falkland also recorded fewer instances of signifi-

cant positive correlation, possibly because differences in coastline morphology, bathymetry,

and wave exposure in West Falkland result in narrower, fringing beds closer to the coastline

than in East Falkland. For example, nearshore canopy is more likely to be removed by our

nearshore mask and may also be more sensitive to wave effects.

Discussion

Automated approaches for remote sensing of giant kelp

The physical and biological characteristics of FLK make this region well suited for satellite

monitoring of giant kelp. For example, FLK kelp beds are relatively wide and extend further

Fig 6. Spatial variability in correlation between standardized canopy extent and modeled nitrate concentration. Correlation coefficients for

modeled nitrate concentrations and DTM standardized canopy extents are shown in purple and green for 1 km coastline subsets. If P� 0.01,

coefficients are instead indicated in gray. Timeseries of select coastline subsets are shown in the figure inlays, with standardized kelp canopy extent

indicated in gray for individual 1 km coastlines and in black for the combined sub-region, and with modeled annual nitrate shown in red. Years are

indicated on the x-axis. The sub-regions included in the figure inlays are indicated with a dashed black line, and correspond as follows: Weddell Island

and adjacent islands (upper left); San Carlos waters (upper right); and Lively Island (lower right).

https://doi.org/10.1371/journal.pone.0257933.g006
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offshore than beds in many other regions. This is particularly noticeable on the eastern-facing

coast, which receives less wave energy and features a broader, shallower shelf than the western-

facing coast. The kelp beds in FLK are also dominated by a single species (i.e., giant kelp or

Macrocystis pyrifera), although Lessonia spp. is also common within the understory or along

the bed edges [15]. Finally, the absence of heavy industry in FLK, combined with low human

population density, means that there are few sources of local pollution which can complicate

atmospheric correction of satellite imagery through the generation of urban aerosols or the

release of effluent into the coastal ocean.

The citizen science and automated spectral methods produced kelp classifications that were

similar to expert classifications based on visual inspection (Fig 3) and validation of kelp pixels

within 1 km coastline partitions (Fig 4), although differences between the citizen science and

automated spectral methods were evident. For example, visual inspection revealed that the

kelp bed classifications produced by citizen science consensus (FF8) had less granularity than

the automated spectral classification (DTM), which more closely resembled the expert classifi-

cations in the shape of the classified kelp beds. The difference in granularity between the classi-

fication methods was anticipated because the citizen scientists produce shapefiles by drawing

vectors around the kelp beds, a process that is more likely to produce rounded, less granular

shapes compared to the pixel-by-pixel analysis of the automated spectral methods.

Validation of the FF8 and DTM methods (Fig 4) indicated better agreement of the DTM

classifications with the expert dataset. Previously, Bell et al., 2020 [10] applied a correction to

Landsat 8 (OLI) fractional coverage products to account for differences in spectral response

between OLI and earlier sensors. The validation analysis herein did not indicate significant

bias or difference in accuracy of kelp classifications between sensors, and applying a similar

spectral response function resulted in over-prediction for the OLI products compared to ETM

+ and TM. As a result, no spectral response function was applied in this analysis to the DTM

data products for the OLI sensor. The difference in intersensor responses between the present

study and Bell et al., 2020 [10] is most likely due to the conversion (in this study) to binary

products. This would suggest that differences between sensors were less severe for low percent

coverage values (i.e., those below the presence/absence threshold of 13%). The consistency

between sensors could also be due, in part, to the spectral response correction already applied

during USGS default processing, in which spectral reflectances are derived for central

wavelengths.

Despite differences in accuracy between the citizen science and spectral automated meth-

ods, comparing timeseries based on each of the FF8 and DTM data products provides useful

redundancy. For example, the methods use different information from the satellite imagery,

and therefore are susceptible to different causes of classification errors. The spectral automated

method, which is derived pixel-by-pixel, does not incorporate spatial information (except by

some filtering rules applied during post-processing), whereas the human viewers who produce

the citizen science classifications recognize shape patterns, and therefore are significantly rely-

ing on spatial information. The spectral automated approach often produces false positives in

individual pixels where the NIR domain is brightened (e.g., as caused by wave facets or sus-

pended sediment). These errors are significantly mitigated by post-processing of the DTM

data products, e.g., by removing pixels which rarely contain kelp or which are not significantly

correlated with adjacent, kelp-containing pixels. As an alternate example, the citizen science

approach falsely classified a large field of drifting debris as kelp canopy, despite different spec-

tral characteristics between kelp canopy and the debris field.

The automated spectral method generated kelp classifications that were similar to the KD

dataset [4], although with slightly better sensitivity, shown in Fig 3. Differences in sensitivity

are most likely due to the combination of the decision tree and the spectral unmixing methods
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in deriving the DTM data products. By pairing two approaches, the DTM dataset can use a

more sensitive criteria (spectral unmixing detects fractional coverage) after rejecting pixels

that are unlikely to contain kelp and therefore may generate false positives. Other reasons for

the improved sensitivity of the DTM method include the increased number of spectral chan-

nels for the Landsat sensors compared to the Sentinel-2 sensor MSI, as well as the increased

signal-to-noise characteristics for the former [42].

Long-term variability in FLK giant kelp canopy

Recently, a global meta-analysis of regional kelp forest trends found that more kelp forests

were decreasing in area than were increasing, but that regional variability was high [13]. Global

observations of kelp forests are geographically and temporally uneven, with more research

focusing on northern hemisphere regions (especially Southern Californian waters) despite evi-

dence that kelp forest ecosystems within less studied regions of the southern hemisphere are

anticipated to be similarly productive and highly dynamic [3]. For example, kelp forest

declines in the Atlantic Ocean have primarily been reported from northern hemisphere sites,

but there are insufficient observations from southern hemisphere regions to determine

whether the southern Atlantic Ocean forests are more resilient than their northern Atlantic

Ocean equivalents [14]. Improving the automation of kelp classification in satellite imagery

(e.g., using the citizen science or automated spectral approaches tested herein) can expand the

geographical extent of kelp canopy datasets and provides globally consistent observations dat-

ing back approximately three and a half decades (based on Landsat 5 imagery). These global

observations support timeseries analyses of previously under-studied regions in order to test

whether these ecosystems have experienced sustained changes in canopy coverage. For exam-

ple, regions like FLK in the southern Atlantic Ocean were not included in the Krumhansl

et al., 2016 [13] global meta analysis due to a lack of kelp forest observations in those systems.

The timeseries presented herein using DTM (1985 to 2021) and FF8 (1997 to 2017) data

products did not indicate significant trends in giant kelp canopy within the FLK region. Specif-

ically, both the DTM and FF8 time series indicated slight (nonsignificant) declines, with

P = 0.28 and P = 0.10, respectively. DTM canopy area binned within 1 km coastline segments

also did not produce cohesive spatial structure in the direction or magnitude of trends (S2

Fig), and therefore the potential role of wave exposure or coastline orientation was not

revealed by our timeseries analyses. Stable giant kelp canopy area in the FLK region is consis-

tent with recent work—in which imagery from satellites (2015–2020) as well as uncrewed

(2019–2020) and crewed (1973) aircraft were compared with records from Charles Darwin

and contemporaries (1829–1834)—that found that the locations of kelp beds recorded in the

late 20th and early 21st centuries were in most instances consistent with those from 19th century

logs [15]. These results are also consistent with a recent report from the nearby Tierra del

Fuego region of South America, in which present-day giant kelp density was found to be simi-

lar to that observed in a 1973 diver survey [43].

Although the timeseries did not provide evidence for a sustained decline in giant kelp can-

opy, the DTM dataset does capture a recent decrease in giant kelp canopy beginning approxi-

mately in 2017 and persisting through the end of the time series. The recent decrease leads to

the lowest observed canopy area occurring during the final year of observations, and monitor-

ing of this system should continue in order to detect potential further declines. However, the

DTM dataset also indicates that a canopy area decline between 1985 and 1987 was similar in

magnitude to the more recent decline, although there were many fewer observations during

this earlier time period (see S1 Table), and observations in 1985 were only available from the

western portion of the FLK region. The ability to identify historical precedent in the
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magnitude of the recent decline demonstrates the importance of obtaining long-term records

when observing species like giant kelp with high interannual variability. For example, the

DTM dataset included the 1987 low kelp observations and produced a higher P-value than the

shorter FF8 dataset, which did not include observations before 1997. However, there was no

historical precedent in either of our datasets for the lowest total canopy area recorded in 2021.

Environmental drivers of giant kelp variability in FLK

Physical and biological factors that regulate the growth and survival of giant kelp include the

temperature, nutrient content, and turbidity of the water, as well as the abundance of grazers

[5]. Among these environmental drivers, temperature is routinely measured by ocean-viewing

satellites at a variety of spatial and temporal scales. Grazer dynamics were not included in this

study, which focused on continuous, spatially resolved datasets, but grazer population changes,

e.g., of sea urchins that inhabit the FLK subtidal zone [34], have contributed to large kelp forest

declines in other systems [44, 45].

Because of the latitude and oceanography of the FLK region, water temperatures are not

anticipated to reach values associated with thermal stress in giant kelp, although local thermal

adaptations can increase sensitivity to heat stress for individual populations [46]. We identified

a positive correlation between synthetic nitrate and giant kelp canopy area, with the variability

in giant kelp canopy lagging nitrate by one year. Overall, the correlations between nitrate and

giant kelp canopy were not strongly dependent on coastline orientation, indicating that nitrate

availability is important for giant kelp growth across the FLK region, and the effects were not

severely diminished by variability in finer-scale, nearshore processes. Seasonal nitrate limita-

tion has been reported for giant kelp beds within the FLK region [17], and a synthetic nitrate

product derived from satellite SST was developed based on in situ relationships between tem-

perature and nitrate measurements (S1 Fig). Based on reports of nitrate limitation as well as

low water temperatures, we present positive correlation of synthetic nitrate to lagged kelp can-

opy (P < 0.01 for the full FLK region) rather than negative correlation with temperature,

although our nitrogen estimate is derived as a linear model of satellite SST.

Marine heatwave events (MHW)—high temperature episodes that coincide with lower

nutrient availability and can facilitate the spreading of disease and non-native species [47]—

have often preceded regional declines in canopy-forming kelp [44, 45, 48–50]. We did not

detect a sustained trend or large annual anomalies in satellite estimates of nitrate or tempera-

ture during the period spanning 2002 to 2021 (SST data from the MODIS Aqua satellite began

in 2002), which is consistent with our timeseries analysis that did not detect changes in giant

kelp canopy area. The one-year lag detected in the relationship between kelp canopy and syn-

thetic nitrate suggests that adequate nutrient availability increases the health and reproductive

success of individuals in order to seed the subsequent year’s population. The time lag is also

consistent with the lag detected between ENSO variability and giant kelp in the Tierra del

Fuego region [43].

Source waters to the FLK region are supplied primarily by the FC (Fig 1), which transports

cold ACC water northward. Stable oceanographic conditions in FLK during the observation

period were likely due to the state of the FC, as well as, perhaps, the large distance separating

the FLK region from the northward confluence of the FC with the warmer, more nutrient-

poor BC waters [32]. For comparison with another region on a western subpolar ocean mar-

gin, a recent die-off of giant kelp in Tasmania coincided with a restructuring of oceanographic

currents, which temporarily changed the source waters for the region such that nutrient avail-

ability decreased, temperatures increased, and an invasive species of sea urchin was intro-

duced, which increased grazing on giant kelp fronds [44].
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We did not detect an association between giant kelp canopy and ENSO, contrary to find-

ings in the nearby Tierra del Fuego region in which kelp coverage was found to be negatively

correlated to ENSO when lagged by one year [43]. Despite the proximity of eastern Tierra del

Fuego and FLK (approximately 600 km), this difference may be due to regional variation in

current exposure. We also did not detect a significant association between kelp canopy and the

Southern Annular Mode (SAM), despite the importance of this climate oscillation on atmo-

sphere and ocean processes at latitudes spanning the FLK region. The SAM strongly influences

temperatures and storm systems across the southern hemisphere, and long-term trends have

been reported for the SAM during the second half of the 20th century [51]. Although we did

not detect a relationship between giant kelp canopy and the SAM, potential effects should be

investigated further because of the coarse temporal resolution of the data products used in our

analysis (e.g., quarterly or annual averages).

Conclusion

Reports of kelp population declines have most often been associated with trailing range-edge

populations, or those nearest the equator, because low latitude kelp forests are most likely to

experience thermal stress and nutrient limitation related to climate warming [14]. However,

mid-range populations are also susceptible to present and future warming trends [52], for

example, because of the introduction of invasive species that graze kelp [44], or because eco-

types can develop intraspecific thermal adaptations that increase sensitivity to temperature

fluctuations [46]. Due to the complex effects of climate change, methods to improve the geo-

graphical coverage of kelp forest observations are needed in order to produce consistent,

global-scale observations that include remote and understudied kelp forest environments.

Our study evaluated approaches for automating classification of giant kelp within Landsat

imagery to enable more geographically expansive remote observations of kelp forests. We

found that, despite differences in granularity, a citizen science consensus approach (FF8) and a

spectral approach based on a decision tree paired with a spectral unmixing algorithm (DTM)

each provided similar perspectives of kelp forest canopy variability in the FLK region. Based

on differences in the types of information used in each approach (e.g., humans recognize spa-

tial patterns, whereas DTM classifies individual pixels), future advancements that can incorpo-

rate spatial structure with a complete set of spectral information would be beneficial, e.g.

computer vision.

We applied the automated methods to test for sustained changes in giant kelp within the

FLK region and did not find evidence of long-term trends in canopy area using either

approach. Our results were consistent with other recent work that included the FLK region

[15], as well as work in the nearby Tierra del Fuego region [43], which also did not find evi-

dence of long-term changes within these southern Atlantic Ocean kelp forest ecosystems. The

regularity of satellite observations allowed for comparisons with ocean state variables, which

revealed strong associations between temperature or synthetic nitrate with giant kelp canopy,

when canopy area was lagged by one year. Based on the region’s low maximum temperatures,

these results suggest that nitrate variability is an important control of giant kelp canopy area in

FLK.

Resources for in situ monitoring of coastal environments are less available for regions that

are distant from major human population centers. Fewer observations are available from the

south hemisphere in general, particularly from the southern Atlantic Ocean, despite the high

productivity and the expansive area of giant kelp forests in these regions. Satellite imagery

enables continuous and sustained observations of kelp forests at a global scale, but making use

of these large datasets requires improvements in automation and image processing.
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Automated kelp classification tools—using citizen science annotations or a decision tree

paired with a spectral unmixing algorithm—can provide accurate and routine observations of

giant kelp canopy to test for environmental change in understudied coastal environments.
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