12,709 research outputs found
Pneumonia Caused by Klebsiella spp. in 46 Horses.
BackgroundKlebsiella spp. are implicated as a common cause of bacterial pneumonia in horses, but few reports describe clinical presentation and disease progression.Hypothesis/objectivesTo describe the signalment, clinicopathologic data, radiographic and ultrasonographic findings, antimicrobial susceptibility, outcome, and pathologic lesions associated with Klebsiella spp. pneumonia in horses.AnimalsForty-six horses from which Klebsiella spp. was isolated from the lower respiratory tract.MethodsRetrospective study. Medical records from 1993 to 2013 at the William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis were reviewed. Exact logistic regression was performed to determine if any variables were associated with survival to hospital discharge.ResultsSurvival in horses <1 year old was 73%. Overall survival in adults was 63%. For adults in which Klebsiella pneumoniae was the primary isolate, survival was 52%. Mechanical ventilation preceded development of pneumonia in 11 horses. Complications occurred in 25/46 horses, with thrombophlebitis and laminitis occurring most frequently. Multi-drug resistance was found in 47% of bacterial isolates. Variables that significantly impacted survival included hemorrhagic nasal discharge, laminitis, and thoracic radiographs with a sharp demarcation between marked caudal pulmonary alveolar infiltration and more normal-appearing caudodorsal lung.Conclusions and clinical importanceKlebsiella spp. should be considered as a differential diagnosis for horses presenting with hemorrhagic pneumonia and for horses developing pneumonia after mechanical ventilation. Multi-drug resistance is common. Prognosis for survival generally is fair, but is guarded for adult horses in which K. pneumoniae is isolated as the primary organism
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
The perception and management of risk in UK office property development
Risk is an ever-present aspect of business, and risk taking is necessary for profit and economic progress. Speculative property development is popularly perceived as a 'risky business' yet, like other entrepreneurs, developers have opportunities to manage the risks they face; techniques include phasing and joint ventures. The associated areas of investment portfolio risk, development risk analysis and construction risk management have all been addressed by research. This article presents new knowledge about how developers perceive risks and the means they subsequently adopt to manage them. The developers of office projects across the UK were sent questionnaires by post. Respondents were asked about their perceptions of risks at the first appraisal stage and currently and about the risk management techniques that they had adopted. In-depth interviews with a selection of respondents were then used to discuss and augment the findings. Developers were most concerned about market-based risks at both stages. Concern about production-orientated risks was lower and fell significantly between the two stages. A fixed price contract was the most common risk management technique. Risk management techniques were used more often outside London and the South East. Developer type affects both the perception and management of risk. While developers do manage risk, decisions are made on the basis of professional and business experience. These findings should help development companies manage risk in a more objective and analytical way
Initial/boundary-value problems of tumor growth within a host tissue
This paper concerns multiphase models of tumor growth in interaction with a
surrounding tissue, taking into account also the interplay with diffusible
nutrients feeding the cells. Models specialize in nonlinear systems of possibly
degenerate parabolic equations, which include phenomenological terms related to
specific cell functions. The paper discusses general modeling guidelines for
such terms, as well as for initial and boundary conditions, aiming at both
biological consistency and mathematical robustness of the resulting problems.
Particularly, it addresses some qualitative properties such as a priori
nonnegativity, boundedness, and uniqueness of the solutions. Existence of the
solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure
Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection.
To restrict infection by Legionella pneumophila, mouse macrophages require Naip5, a member of the nucleotide-binding oligomerization domain leucine-rich repeat family of pattern recognition receptors, which detect cytoplasmic microbial products. We report that mouse macrophages restricted L. pneumophila replication and initiated a proinflammatory program of cell death when flagellin contaminated their cytosol. Nuclear condensation, membrane permeability, and interleukin-1beta secretion were triggered by type IV secretion-competent bacteria that encode flagellin. The macrophage response to L. pneumophila was independent of Toll-like receptor signaling but correlated with Naip5 function and required caspase 1 activity. The L. pneumophila type IV secretion system provided only pore-forming activity because listeriolysin O of Listeria monocytogenes could substitute for its contribution. Flagellin monomers appeared to trigger the macrophage response from perforated phagosomes: once heated to disassemble filaments, flagellin triggered cell death but native flagellar preparations did not. Flagellin made L. pneumophila vulnerable to innate immune mechanisms because Naip5+ macrophages restricted the growth of virulent microbes, but flagellin mutants replicated freely. Likewise, after intratracheal inoculation of Naip5+ mice, the yield of L. pneumophila in the lungs declined, whereas the burden of flagellin mutants increased. Accordingly, macrophages respond to cytosolic flagellin by a mechanism that requires Naip5 and caspase 1 to restrict bacterial replication and release proinflammatory cytokines that control L. pneumophila infection
A multiple scale model for tumor growth
We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws
Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug
A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud
\ud
Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids
Purification and Characterization of meta-Cresol Purple for Spectrophotometric Seawater pH Measurements
Spectrophotometric procedures allow rapid and precise measurements of the pH of natural waters. However, impurities in the acid–base indicators used in these analyses can significantly affect measurement accuracy. This work describes HPLC procedures for purifying one such indicator, meta-cresol purple (mCP), and reports mCP physical–chemical characteristics (thermodynamic equilibrium constants and visible-light absorbances) over a range of temperature (T) and salinity (S). Using pure mCP, seawater pH on the total hydrogen ion concentration scale (pHT) can be expressed in terms of measured mCP absorbance ratios (R = λ2A/λ1A) as follows:where −log(K2Te2) = a + (b/T) + c ln T – dT; a = −246.64209 + 0.315971S + 2.8855 × 10–4S2; b = 7229.23864 – 7.098137S – 0.057034S2; c = 44.493382 – 0.052711S; d = 0.0781344; and mCP molar absorbance ratios (ei) are expressed as e1 = −0.007762 + 4.5174 × 10–5T and e3/e2 = −0.020813 + 2.60262 × 10–4T + 1.0436 × 10–4 (S – 35). The mCP absorbances, λ1A and λ2A, used to calculate R are measured at wavelengths (λ) of 434 and 578 nm. This characterization is appropriate for 278.15 ≤ T ≤ 308.15 and 20 ≤ S ≤ 40
Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach
We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud
confined tumour growth and to model its impact on cellular processes
Localisation and disorder in the design of 2D photonic crystal devices
Photonic crystals are meta-materials that can inhibit the propagation of light in all directions for specific wavelength ranges. Material or structural defects can be introduced into the crystal to cause localised modes, providing the ability to mould the flow of light on the wavelength scale and allowing the development of miniaturised, integrated photonic devices. For this reason, photonic crystals will likely be key building blocks for future micro-optical and communication technology. In this paper, we examine the Bloch mode modelling of 2D photonic crystal structures with application to the analysis of photonic crystal waveguides and their susceptibility to disorder, which provides a framework for studying fabrication tolerances in realistic devices
- …