3,225 research outputs found

    Synthesis and evaluation of polymers for use in early warning fire alarm devices

    Get PDF
    Conjugated polyacetylene polymers and one condensation polyene, all containing a high degree of conjugated unsaturation, were synthesized. These polymers were characterized by chemical analysis and by thermogravimetric analysis, as well as for their film-forming capability and gas/polymer interactions. It was found that those that had a high degree of conjugated unsaturation and had resonance - stabilizing groups were very thermally stable to 200 C, e.g., poly(dicyanoacetylene), poly(ethynylferrocene) and poly(phenylacetylene); while those with labile moieties, such as poly(p-formamidophenylacetylene), among others, suffered some degradation when heated in air. When subjected to gas/polymer interaction effects, the greatest change in electrical conductance was observed when ammonia was used as the gas and poly(p-nitrophenylacetylene) was the detector. Other polymers showed similar behavior. For example, poly(ethynylcarborane), considered to be an electron acceptor also showed a change in electrical conductance when exposed to ammonia, while poly(ethynylpyridine) and poly(ethylidenepyridazine) responded to carbon monoxide. However, for "fire gases" (gases from smoldering cotton), poly(ethynylferrocene) was the most responsive. Thus, the concept of polymers with different electronegativities forming charge-transfer complexes with different gases was found to be operable

    Semiconducting polymers for gas detection

    Get PDF
    Conjugated polyenes, and polyesters containing phthalocyanine in their backbone, were synthesized. These polymers were characterized by chemical analysis, thermogravimetric analysis, spectral analysis, and X-ray diffraction studies for crystallinity, as well as for their film-forming capability and gas/polymer interactions. Most of the polymers were relatively insensitive to water vapor up to 50 percent relative humidity, but the polyester/phthalocyanine (iron) polymer was relatively insensitive up to 100 percent RH. On the other hand, poly(p-dimethylaminophenylacetylene) was too conductive at 100 percent RH. Of the gases tested, the only ones that gave any evidence of interacting with the polymers were SO2, NOx, HCN and NH3. Poly(imidazole)/thiophene responded to each of these gases at all relative humidities, while the other polymers gave varying response, depending upon the RH. Thus, since most of these gases were electron-accepting, the electron-donating character of poly(imidazole)/thiophene substantiates the concept of electronegativity being the operating principle for interaction effects. Of the six polymers prepared, poly(imidazole)/thiophene first showed a very good response to smoldering cotton, but it later became nonresponsive; presumably due to oxidation effects

    Topological structures of adiabatic phase for multi-level quantum systems

    Full text link
    The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) have a monopole structure, the curvature two-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures.Comment: 15 pages, no figures. Accepted by J.Phys.
    corecore