121 research outputs found

    The wave-vector power spectrum of the local tunnelling density of states: ripples in a d-wave sea

    Full text link
    A weak scattering potential imposed on a CuO2CuO_2 layer of a cuprate superconductor modulates the local density of states N(x,ω)N(x,\omega). In recently reported experimental studies scanning-tunneling maps of N(x,ω)N(x,\omega) have been Fourier transformed to obtain a wave-vector power spectrum. Here, for the case of a weak scattering potential, we discuss the structure of this power spectrum and its relationship to the quasi-particle spectrum and the structure factor of the scattering potential. Examples of quasi-particle interferences in normal metals and ss- and d-wave superconductors are discussed.Comment: 22 pages, 21 figures; enlarged discussion of the d-wave response, to be published in Physical Review

    Comparing edge and fragmentation effects within seagrass communities: A meta-analysis

    Get PDF
    Examining community responses to habitat configuration across scales informs basic and applied models of ecosystem function. Responses to patch-scale edge effects (i.e., ecological differences between patch edges and interiors) are hypothesized to underpin the effects of landscape-scale fragmentation (i.e., mosaics of multipatch habitat and matrix). Conceptually, this appears justifiable because fragmented habitats typically have a greater proportion of edge than continuous habitats. To critically inspect whether patch-scale edge effects translate consistently (i.e., scale up) into patterns observed in fragmented landscapes, we conducted a meta-analysis on community relationships in seagrass ecosystems to synthesize evidence of edge and fragmentation effects on shoot density, faunal densities, and predation rates. We determined effect sizes by calculating log response ratios for responses within patch edges versus interiors to quantify edge effects, and fragmented versus continuous landscapes to quantify fragmentation effects. We found that both edge and fragmentation effects reduced seagrass shoot densities, although the effect of edge was statistically stronger. By contrast, fauna often exhibited higher densities in patch edges, while fragmentation responses varied directionally across taxa. Fish densities trended higher in patch edges and fragmented landscapes. Benthic fishes responded more positively than benthopelagic fishes to edge effects, although neither guild strongly responded to fragmentation. Invertebrate densities increased in patch edges and trended lower in fragmented landscapes; however, these were small effect sizes due to the offsetting responses of two dominant epifaunal guilds: decapods and smaller crustaceans. Edge and fragmentation affected predation similarly, with prey survival trending lower in patch edges and fragmented landscapes. Overall, several similarities suggested that edge effects conform with patterns of community dynamics in fragmented seagrass. However, across all metrics except fish densities, variability in fragmentation effects was twice that of edge effects. Variance patterns combined with generally stronger responses to edge than fragmentation, warrant caution in unilaterally “scaling-up” edge effects to describe fragmentation effects. Alternatively, fragmentation includes additional factors (e.g., matrix effects, patch number, mean patch size, isolation) that may enhance or offset edge effects. Fragmentation and increased edge are syndromes of habitat degradation, therefore this analysis informs mechanistic models of community change in altered terrestrial and marine systems

    Power spectrum of many impurities in a d-wave superconductor

    Full text link
    Recently the structure of the measured local density of states power spectrum of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of peaks at an "octet" of scattering wave vectors determined assuming weak, noninterfering scattering centers. Using analytical arguments and numerical solutions of the Bogoliubov-de Gennes equations, we discuss how the interference between many impurities in a d-wave superconductor alters this scenario. We propose that the peaks observed in the power spectrum are not the features identified in the simpler analyses, but rather "background" structures which disperse along with the octet vectors. We further consider how our results constrain the form of the actual disorder potential found in this material.Comment: 5 pages.2 figure

    Regional environmental variation and local species interactions influence biogeographic structure on oyster reefs

    Get PDF
    Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions

    Genetic diversity and phenotypic variation within hatchery-produced oyster cohorts predict size and success in the field

    Get PDF
    The rapid growth of the aquaculture industry to meet global seafood demand offers both risks and opportunities for resource management and conservation. In particular, hatcheries hold promise for stock enhancement and restoration, yet cultivation practices may lead to enhanced variation between populations at the expense of variation within populations, with uncertain implications for performance and resilience. To date, few studies have assessed how production techniques impact genetic diversity and population structure, as well as resultant trait variation in and performance of cultivated offspring. We collaborated with a commercial hatchery to produce multiple cohorts of the eastern oyster (Crassostrea virginica) from field-collected broodstock using standard practices. We recorded key characteristics of the broodstock (male : female ratio, effective population size), quantified the genetic diversity of the resulting cohorts, and tested their trait variation and performance across multiple field sites and experimental conditions. Oyster cohorts produced under the same conditions in a single hatchery varied almost twofold in genetic diversity. In addition, cohort genetic diversity was a significant positive predictor of oyster performance traits, including initial size and survival in the field. Oyster cohorts produced in the hatchery had lower within-cohort genetic variation and higher among-cohort genetic structure than adults surveyed from the same source sites. These findings are consistent with “sweepstakes reproduction” in oysters, even when manually spawned. A readily measured characteristic of broodstock, the ratio of males to females, was positively correlated with within-cohort genetic diversity of the resulting offspring. Thus, this metric may offer a tractable way both to meet short-term production goals for seafood demand and to ensure the capacity of hatchery-produced stock to achieve conservation objectives, such as the recovery of self-sustaining wild populations

    Environmental gradients influence biogeographic patterns of nonconsumptive predator effects on oysters

    Get PDF
    When prey alter behavioral or morphological traits to reduce predation risk, they often incur fitness costs through reduced growth and reproduction as well as increased mortality that are known as nonconsumptive effects (NCEs). Environmental context and trophic structure can individually alter the strength of NCEs, yet the interactive influence of these contexts in natural settings is less understood. At six sites across 1000 km of the Southeastern Atlantic Bight (SAB), we constructed oyster reefs with one, two, or three trophic levels and evaluated the traits of focal juvenile oysters exposed to predation risk cues. We monitored environmental variables (water flow velocity, microalgal resources, and oyster larval recruitment) that may have altered how oysters respond to risk, and we also assessed the cost of trait changes to oyster mortality and growth when they were protected from direct predatory loss. Regardless of trophic structure, we found that oyster shell strength and natural oyster recruitment peaked at the center of the region. This high recruitment negated the potential for NCEs by smothering and killing the focal oysters. Also independent of trophic structure, focal oysters grew the most at the northernmost site. In contrast to, and perhaps because of, these strong environmental effects, the oyster traits of condition index and larval recruitment were only suppressed by the trophic treatment with a full complement of risk cues from intermediate and top predators at just the southernmost site. But at this same site, statistically significant NCEs on oyster growth and mortality were not detected. More strikingly, our study demonstrated environmental gradients that differentially influence oysters throughout the SAB. In particular, the results of our trophic manipulation experiment across these gradients suggest that in the absence of predation, environmental differences among sites may overwhelm the influence of NCEs on prey traits and population dynamics

    Quasiparticle scattering and local density of states in the d-density wave phase

    Full text link
    We study the effects of single-impurity scattering on the local density of states in the high-TcT_c cuprates. We compare the quasiparticle interference patterns in three different ordered states: d-wave superconductor (DSC), d-density wave (DDW), and coexisting DSC and DDW (DSC-DDW). In the coexisting state, at energies below the DSC gap, the patterns are almost identical to those in the pure DSC state with the same DSC gap. However, they are significantly different for energies greater than or equal to the DSC gap. This transition at an energy around the DSC gap can be used to test the nature of the superconducting state of the underdoped cuprates by scanning tunneling microscopy. Furthermore, we note that in the DDW state the effect of the coherence factors is stronger than in the DSC state. The new features arising due to DDW ordering are discussed.Comment: 6 page, 5 figures (Higher resolution figures are available by request

    An Anglo-Saxon execution cemetery at Walkington Wold, Yorkshire

    Get PDF
    This paper presents a re-evaluation of a cemetery excavated over 30 years ago at Walkington Wold in east Yorkshire. The cemetery is characterized by careless burial on diverse alignments, and by the fact that most of the skeletons did not have associated crania. The cemetery has been variously described as being the result of an early post-Roman massacre, as providing evidence for a ‘Celtic’ head cult or as an Anglo-Saxon execution cemetery. In order to resolve the matter, radiocarbon dates were acquired and a re-examination of the skeletal remains was undertaken. It was confirmed that the cemetery was an Anglo-Saxon execution cemetery, the only known example from northern England, and the site is set into its wider context in the paper

    Quantum interference between multiple impurities in anisotropic superconductors

    Full text link
    We study the quantum interference between impurities in d-wave superconductors within a potential scattering formalism that easily applies to multiple impurities. The evolution of the low-energy local density of states for both magnetic and nonmagnetic short-ranged scatterers are studied as a function of the spatial configuration of the impurities. Further we discuss the influence of subdominant bulk superconducting order parameters on the interference pattern from multiple impurities.Comment: 4 pages, 6 figure
    • 

    corecore