2,807 research outputs found

    The Sinclairs of Old Fort Des Moines

    Full text link

    The Sinclairs of Old Fort Des Moines

    Get PDF

    Iowa

    Get PDF

    Iowa in War Times

    Get PDF
    This history of Iowa\u27s involvement in the Civil War was published in 1888. The author, Samuel Hawkins Marshall Byers, was a member of the Fifth Iowa Infantry during the Civil War, having enlisted in 1861. Byers was eventually captured and spent well over a year in several Confederate prison camps. Following his escape, Byers joined Gen. William Tecumseh Sherman\u27s staff until the war\u27s end. In 1869 he was appointed United States Consul to Zurich, Switzerland, and later held the same position in Rome. Byers many works include The Song of Iowa the official state song of Iowa.https://scholarworks.uni.edu/iowabooks/1016/thumbnail.jp

    The Song of Iowa

    Get PDF

    Re-parameterization Invariance in Fractional Flux Periodicity

    Full text link
    We analyze a common feature of a nontrivial fractional flux periodicity in two-dimensional systems. We demonstrate that an addition of fractional flux can be absorbed into re-parameterization of quantum numbers. For an exact fractional periodicity, all the electronic states undergo the re-parameterization, whereas for an approximate periodicity valid in a large system, only the states near the Fermi level are involved in the re-parameterization.Comment: 4 pages, 1 figure, minor changes, final version to appear in J. Phys. Soc. Jp

    Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors

    Full text link
    New experiments that measure the low-frequency shot-noise spectrum at local tunneling contacts on mesoscopic structures are proposed. The current fluctuation spectrum at a single tunneling tip is determined by local partial densities of states. The current-correlation spectrum between two tunneling tips is sensitive to non-diagonal density of states elements which are expressed in terms of products of scattering states of the conductor. Thus such an experiment permits to investigate correlations of electronic wave functions. We present specific results for a clean wire with a single barrier and for metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure

    Persistent current of two-chain Hubbard model with impurities

    Full text link
    The interplay between impurities and interactions is studied in the gapless phase of two-chain Hubbard model in order to see how the screening of impurity potentials due to repulsive interactions in single-chain model will be changed by increasing the number of channels. Renormalization group calculations show that charge stiffness, and hence persistent current, of the two-chain model are less enhanced by interactions than single chain case.Comment: 4 Pages, RevTeX, No figures, Submitted to PR

    Spin diffusion in doped semiconductors

    Full text link
    The behavior of spin diffusion in doped semiconductors is shown to be qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet in an intrinsic semiconductor must be a multiple-band disturbance, involving inhomogeneous distributions of both electrons and holes, in a doped semiconductor a single-band disturbance is possible. For n-doped nonmagnetic semiconductors the enhancement of diffusion due to a degenerate electron sea in the conduction band is much larger for these single-band spin packets than for charge packets, and can exceed an order of magnitude at low temperatures even for equilibrium dopings as small as 10^16 cm^-3. In n-doped ferromagnetic and semimagnetic semiconductors the motion of spin packets polarized antiparallel to the equilibrium carrier spin polarization is predicted to be an order of magnitude faster than for parallel polarized spin packets. These results are reversed for p-doped semiconductors.Comment: 8 pages, 4 figure

    Topological quenching of the tunnel splitting for a particle in a double-well potential on a planar loop

    Get PDF
    The motion of a particle along a one-dimensional closed curve in a plane is considered. The only restriction on the shape of the loop is that it must be invariant under a twofold rotation about an axis perpendicular to the plane of motion. Along the curve a symmetric double-well potential is present leading to a twofold degeneracy of the classical ground state. In quantum mechanics, this degeneracy is lifted: the energies of the ground state and the first excited state are separated from each other by a slight difference ¿E, the tunnel splitting. Although a magnetic field perpendicular to the plane of the loop does not influence the classical motion of the charged particle, the quantum-mechanical separation of levels turns out to be a function of its strength B. The dependence of ¿E on the field B is oscillatory: for specific discrete values Bn the splitting drops to zero, indicating a twofold degeneracy of the ground state. This result is obtained within the path-integral formulation of quantum mechanics; in particular, the semiclassical instanton method is used. The origin of the quenched splitting is intuitively obvious: it is due to the fact that the configuration space of the system is not simply connected, thus allowing for destructive interference of quantum-mechanical amplitudes. From an abstract point of view this phenomenon can be traced back to the existence of a topological term in the Lagrangian and a nonsimply connected configuration space. In principle, it should be possible to observe the splitting in appropriately fabricated mesoscopic rings consisting of normally conducting metal
    corecore