31 research outputs found

    Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome

    Get PDF
    Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial timeā€“frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate

    A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome

    Get PDF
    (A) Scalp topographies of ā€œlocal couplingā€, showing correlations in each electrode between relative power of activity in the theta, and lower and upper alpha power bands and gamma power for male FXS and male healthy control participants, with significant group differences presented in the bottom row (pā€‰<ā€‰0.05, corrected), with dark blue reflecting no group difference. (B) Mean and standard error of correlations for all electrodes showing group differences as are plotted in A. * denotes correlations of spectral power in theta and upper alpha bands with gamma band power that are significantly different from zero based on the results of permutation analyses at pā€‰<ā€‰0.05. (TIF 4297Ā kb

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Cost-Effectiveness of Long-Acting Injectable Paliperidone Palmitate Versus Haloperidol Decanoate in Maintenance Treatment of Schizophrenia

    Get PDF
    This study assessed the relative cost-effectiveness of a first generation and a second generation long-acting injectable antipsychotic: haloperidol decanoate (HD) and paliperidone palmitate (PP), respectively

    Effects of switching from olanzapine, quetiapine, and risperidone to aripiprazole on 10-year coronary heart disease risk and metabolic syndrome status: Results from a randomized controlled trial

    Get PDF
    This study examined the clinical significance of switching from olanzapine, quetiapine, or risperidone to aripiprazole by examining changes in predicted risk of cardiovascular disease (CVD) according to the Framingham Risk Score (FRS) and metabolic syndrome status. FRS estimates 10-year risk of ā€œhardā€ coronary heart disease (CHD) outcomes (myocardial infarction and coronary death) while metabolic syndrome is associated with increased risk of CVD, stroke, and diabetes mellitus

    Effectiveness of Paliperidone Palmitate vs Haloperidol Decanoate for Maintenance Treatment of Schizophrenia: A Randomized Clinical Trial

    Get PDF
    Long-acting injectable (LAI) antipsychotics are used to reduce medication non-adherence and subsequent relapse in schizophrenia-spectrum disorders. The relative effectiveness of LAI versions of second-generation (atypical) and older antipsychotics has not been assessed

    Routine Outcomes Monitoring to Support Improving Care for Schizophrenia: Report from the VA Mental Health QUERI

    Get PDF
    In schizophrenia, treatments that improve outcomes have not been reliably disseminated. A major barrier to improving care has been a lack of routinely collected outcomes data that identify patients who are failing to improve or not receiving effective treatments. To support high quality care, the VA Mental Health QUERI used literature review, expert interviews, and a national panel process to increase consensus regarding outcomes monitoring instruments and strategies that support quality improvement. There was very good consensus in the domains of psychotic symptoms, side-effects, drugs and alcohol, depression, caregivers, vocational functioning, and community tenure. There are validated instruments and assessment strategies that are feasible for quality improvement in routine practice

    Fine Tuning of Ca(V)1.3 Ca2+ Channel Properties in Adult Inner Hair Cells Positioned in the Most Sensitive Region of the Gerbil Cochlea

    Get PDF
    Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ,2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ,218 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds

    Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome

    No full text
    Abstract Background Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. Methods EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0ā€“100Ā Hz over 2Ā s. Results Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. Conclusions This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics
    corecore