23 research outputs found

    Essential oil mixture on rumen fermentation and microbial community – an study

    Get PDF
    Objective The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. Methods Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen (NH3-N), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. Results After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest NH3-N concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p< 0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. Conclusion The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation

    Elm tree bark extract inhibits HepG2 hepatic cancer cell growth via pro-apoptotic activity

    Get PDF
    Control of inflammation is widely accepted as an important strategy for cancer chemoprevention. Anti-inflammatory effects of bark extracts of elm tree (BEE) have been amply reported. Therefore, BEE may be a good candidate cancer chemopreventive agent. Considering the high incidence of hepatic cancer and limited therapeutic approaches for treating this disease, it is important to develop liver cancer-specific chemopreventive agents. To evaluate the chemopreventive potential of BEE, we investigated the growth inhibition effect of BEE on the HepG2 human hepatocellular carcinoma cell line. We performed a cell counting kit-8 assay to determine cell viability, and 4,6-diamino-2-phenylindole staining and flow cytometry to measure apoptotic cell death. Finally, the expression levels of pro- and anti-apoptotic proteins were measured. BEE inhibited the growth of HepG2 cells and induced apoptosis in a dose-dependent manner. Pro-apoptotic activity was promoted via the mitochondrial pathway of apoptosis, as demonstrated by the activation of pro-apoptotic proteins Bax, caspase-9, caspase-3, and poly (ADP-ribose) polymerase as well as the down-regulation of the anti-apoptotic protein Bcl-2. These results suggest that BEE may have potential use in hepatic cancer chemoprevention by suppressing cancer cell growth via pro-apoptotic activity

    The inhibitory effect of quercitrin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice

    Get PDF
    Quercetin 3-O-β-(2"-galloyl)-rhamnopyranoside (QGR) is a naturally occurring quercitrin gallate, which is a polyphenolic compound that was originally isolated from Persicaria lapathifolia (Polygonaceae). QGR has been shown to have an inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. Therefore, this study was conducted to investigate the inhibitory effect of QGR on nitric oxide production and inducible nitric oxide synthases (iNOS) expression in LPS-stimulated Balb/c mice. To accomplish this, 10 mg/kg of QGR was administered via gavage once a day for 3 days. iNOS was then induced by intraperitoneal injection of LPS. Six hours after the LPS treatment the animals were sacrificed under ether anethesia. The serum levels of NO were then measured to determine if QGR exerted an inhibitory effect on NO production in vivo. LPS induced an approximately 6 fold increase in the expression of NO. However, oral administration of QGR reduced the LPS induced increase in NO by half. Furthermore, RT-PCR and western blot analysis revealed that the increased levels of iNOS expression that occurred in response to treatment with LPS were significantly attenuated in response to QGR pretreatment. Histologically, LPS induced the infiltration of polymorphonuclear neutrophils in portal veins and sinusoids and caused the formation of a large number of necrotic cells; however, pretreatment with QGR attenuated these LPS induced effects. Taken together, these results indicate that QGR inhibits iNOS expression in vivo as well as in vitro and has antiinflammatory potentials

    Effects of endocrine disrupting chemicals on expression of phospholipid hydroperoxide glutathione peroxidase mRNA in rat testes

    Get PDF
    Phospholipid hydroperoxide glutathione peroxidase (PHGPx), an antioxidative selenoprotein, is modulated by estrogen in the testis and oviduct. To examine whether potential endocrine disrupting chemicals (EDCs) affect the microenvironment of the testes, the expression patterns of PHGPx mRNA and histological changes were analyzed in 5-week-old Sprague-Dawley male rats exposed to several EDCs such as an androgenic compound [testosterone (50, 200, and 1,000 µg/kg)], anti-androgenic compounds [flutamide (1, 5, and 25 mg/kg), ketoconazole (0.2 and 1 mg/kg), and diethylhexyl phthalate (10, 50, and 250 mg/kg)], and estrogenic compounds [nonylphenol (10, 50, 100, and 250 mg/kg), octylphenol (10, 50, and 250 mg/kg), and diethylstilbestrol (10, 20, and 40 µg/kg)] daily for 3 weeks via oral administration. Mild proliferation of germ cells and hyperplasia of interstitial cells were observed in the testes of the flutamide-treated group and deletion of the germinal epithelium and sloughing of germ cells were observed in testes of the diethylstilbestrol-treated group. Treatment with testosterone was shown to slightly decrease PHGPx mRNA levels in testes by the reverse transcriptionpolymerase chain reaction. However, anti-androgenic compounds (flutamide, ketoconazole, and diethylhexyl phthalate) and estrogenic compounds (nonylphenol, octylphenol, and diethylstilbestrol) significantly upregulated PHGPx mRNA in the testes (p < 0.05). These findings indicate that the EDCs might have a detrimental effect on spermatogenesis via abnormal enhancement of PHGPx expression in testes and that PHGPx is useful as a biomarker for toxicity screening of estrogenic or antiandrogenic EDCs in testes

    Study on the Improvement of a Collision Avoidance System for Curves

    No full text
    Conventional autonomous emergency braking (AEB) systems derive the relative distance of a curve using a curvature calculated through an in-vehicle sensor. However, as the AEB system cannot reflect geometric factors of a curve with variable curvature, it does not accurately estimate relative distances, based on which the AEB performance is evaluated. Accordingly, an AEB system reflecting the geometric information of curves needs to be considered and developed to improve the AEB performance for curves. This study proposes a method to improve the performance of AEB systems for curves through curvilinear coordinate conversion, which is used to reflect the geometric information of roads for the navigation of an autonomous vehicle. Both the host and target vehicles are located by means of curvilinear coordinate conversion. The positions thus identified are used to calculate the relative distance and lanes. Finally, the hazard risk criterion&mdash;that is, time-to-collision (TTC)&mdash;is derived using the proposed AEB system. To demonstrate the effectiveness of the proposed AEB system, this study compares it with the conventional AEB system by analyzing the collision avoidance performance on curves through relative distances and TTC

    Role of Backbone Fault System on Earthquake Spawning and Geohazards in the Seoul Metropolitan Area

    No full text
    Abstract Major earthquakes in continental regions may cause significant damage. Preexisting fault system across megacity receives high attention for possible seismic damages. Earthquake occurrence mechanism is important to assess the geohazard potentials. Continental‐scale Quaternary fault system is developed across the Seoul metropolitan area where the population is the largest in the Korean Peninsula. Historical seismic‐damage records suggest potential seismic hazards in the Seoul metropolitan area. We investigate the fault motions and spatial distribution of earthquakes in the Seoul metropolitan area using a matched‐filter technique that is based on stacked waveform crosscorrelation functions among densely‐deployed seismic stations. The analysis detects 1103 earthquakes that include 360 events with magnitudes (ML) of −0.6 to 2.0 around the Chugaryeong fault and 34 events with magnitudes of −0.5 to 2.7 around Wangsukcheon, Pocheon, and Yeseonggang faults. The seismicity suggests a set of near‐vertical subparallel (or orthogonal) faults that develop from the major faults. A major fault system behaves as a backbone structure that makes branch faults develop, producing seismicity including major earthquakes. The backbone structure may control the fault development that conforms to the ambient stress field. The backbone faults may play a role to increase geohazard potentials

    Improving SOH estimation for lithium-ion batteries using TimeGAN

    No full text
    Recently, the xEV market has been expanding by strengthening regulations on fossil fuel vehicles. It is essential to ensure the safety and reliability of batteries, one of the core components of xEVs. Furthermore, estimating the battery’s state of health (SOH) is critical. There are model-based and data-based methods for SOH estimation. Model-based methods have limitations in linearly modeling the nonlinear internal state changes of batteries. In data-based methods, high-quality datasets containing large quantities of data are crucial. Since obtaining battery datasets through measurement is difficult, this paper supplements insufficient battery datasets using time-series generative adversarial network and compares the improvement rate in SOH estimation accuracy through long short-term memory and gated recurrent unit based on recurrent neural networks. According to the results, the average root mean square error of battery SOH estimation improved by approximately 25%, and the learning stability improved by approximately 40%

    Determining Exposure Factors of Anti-Fogging, Dye, Disinfectant, Repellent, and Preservative Products in Korea

    No full text
    Reliable exposure factors are essential to determine health risks posed by chemicals in consumer products. We analyzed five risk-concerned product categories (anti-fogging, dye, disinfectant, repellent, and preservative products) for 13 products (three car anti-fogging products, a lens anti-fogging product, two car dye products, two drain disinfectants, an air conditioner disinfectant, a chlorine-based disinfectant, a fabric repellent, an insect repellent for food, and a wood preservative) considered to be of high risk in order to determine exposure factors via web surveys and estimation of amount of product. Among the 3000 participants (1482 (49%) men) aged ≥19 years, drain disinfectants were used most frequently (38.2%); the rate of usage of the other products ranged between 1.1–24.0%. The usage rates for the consumer products differed by sex, age, income, and education. Some consumer products such as car and lens anti-fogging products, chlorine-based disinfectants, fabric repellents, and drain disinfectants were regularly used more than once a month, while car dye products, air conditioner disinfectants, insect repellents for food, and wood preservatives were not regularly used owing to the specific product purposes and seasonal needs. Our results could be used for managing or controlling chemical substances in consumer products and conducting accurate exposure assessments

    Subsurface Seismogenic Faults of the Seoul Metropolitan Area Inferred from Helmholtz Tomography

    No full text
    &lt;p&gt;This dataset is an ASCII-format data file of phase-velocity maps and 3-D S-wave velocity models for the Seoul metropolitan area.&lt;/p&gt

    Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent

    No full text
    Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation
    corecore