227 research outputs found

    Development, Implementation, and Application of an Improved Protocol for the Performance Evaluation of Regulatory Photochemical Air Quality Modeling

    Get PDF
    Ozone is a secondary pollutant resulting from complex reactions of two precursors: nitrogen oxides (NOX), and volatile organic compounds (VOCs) under ozone-conducive meteorological conditions. Thus, the ozone modeling becomes complex and needs rigorous model performance evaluations (MPE) before the modeling results are used for air quality decisions. In the past regulatory ozone modeling, however, virtually all MPE practices were over-simplified by following the EPA's current MPE method. That is, modelers cannot answer the most important question in applying air quality models for ozone decision-making processes with the EPA's MPE method: "why should I believe this modeling?" In this study I investigated a solution by integrating the theoretical advances of MPE for environmental modeling with my practical knowledge in regulatory ozone modeling. As a result, I developed an MPE method with which modelers must (1) gather and examine graphical/statistical measures in a systematic manner, (2) conduct in-depth analyses with respect to potential ozone control options, and (3) report their performance assessments explicitly in light of policy questions. Because the existing analysis tools showed significant shortcomings in implementing the new MPE method, a new tool was developed to exercise the new MPE method efficiently. With the new tool, modelers can accomplish MPE tasks necessitated by the new MPE method in a timely manner. iii The Houston-Galveston Mid-Course Review (HGMCR) modeling was re-evaluated as the case study to demonstrate the advantages of new MPE method. I could reveal that the HGMCR modeling showed significantly low reliability even though the model could pass the majority of EPA's simple statistical tests. That is, the model showed significantly high biases in winds, NOX, and VOCs. Two major roots of high biases were identified: (1) the highly reactive VOCs (HRVOC) adjustment that was not scientifically defensible and (2) the insufficient modeling grid resolution with respect to the nature of ozone problems in Houston. Ultimately, the application of new MPE method led me to develop an alternative modeling case with which I showed that the alternative case could be used in a limited way to test a certain type of HRVOC control strategies by reducing VOCs biases

    Limits of Binaries That Can Be Characterized by Gravitational Microlensing

    Full text link
    Due to the high efficiency of planet detections, current microlensing planet searches focus on high-magnification events. High-magnification events are sensitive to remote binary companions as well and thus a sample of wide-separation binaries are expected to be collected as a byproduct. In this paper, we show that characterizing binaries for a portion of this sample will be difficult due to the degeneracy of the binary-lensing parameters. This degeneracy arises because the perturbation induced by the binary companion is well approximated by the Chang-Refsdal lensing for binaries with separations greater than a certain limit. For binaries composed of equal mass lenses, we find that the lens binarity can be noticed up to the separations of ∌60\sim 60 times of the Einstein radius corresponding to the mass of each lens. Among these binaries, however, we find that the lensing parameters can be determined only for a portion of binaries with separations less than ∌20\sim 20 times of the Einstein radius.Comment: 5 pages, 3 figures, 1 tabl

    Microlensing Detections of Planets in Binary Stellar Systems

    Full text link
    We demonstrate that microlensing can be used for detecting planets in binary stellar systems. This is possible because in the geometry of planetary binary systems where the planet orbits one of the binary component and the other binary star is located at a large distance, both planet and secondary companion produce perturbations at a common region around the planet-hosting binary star and thus the signatures of both planet and binary companion can be detected in the light curves of high-magnification lensing events. We find that identifying planets in binary systems is optimized when the secondary is located in a certain range which depends on the type of the planet. The proposed method can detect planets with masses down to one tenth of the Jupiter mass in binaries with separations <~ 100 AU. These ranges of planet mass and binary separation are not covered by other methods and thus microlensing would be able to make the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma

    KMT-2016-BLG-1107: A New Hollywood-Planet Close/Wide Degeneracy

    Get PDF
    We show that microlensing event KMT-2016-BLG-1107 displays a new type of degeneracy between wide-binary and close-binary Hollywood events in which a giant-star source envelops the planetary caustic. The planetary anomaly takes the form of a smooth, two-day "bump" far out on the falling wing of the light curve, which can be interpreted either as the source completely enveloping a minor-image caustic due to a close companion with mass ratio q=0.036q=0.036, or partially enveloping a major-image caustic due to a wide companion with q=0.004q=0.004. The best estimates of the companion masses are both in the planetary regime (3.3−1.8+3.5 Mjup3.3^{+3.5}_{-1.8}\,M_{\rm jup} and 0.090−0.037+0.096 Mjup0.090^{+0.096}_{-0.037}\,M_{\rm jup}) but differ by an even larger factor than the mass ratios due to different inferred host masses. We show that the two solutions can be distinguished by high-resolution imaging at first light on next-generation ("30m") telescopes. We provide analytic guidance to understand the conditions under which this new type of degeneracy can appear.Comment: 23 pages, 7 figures, accepted for publication in A

    KMT-2018-BLG-1990Lb: A Nearby Jovian Planet From A Low-Cadence Microlensing Field

    Get PDF
    We report the discovery and characterization of KMT-2018-BLG-1990Lb, a Jovian planet (mp=0.57−0.25+0.79 MJ)(m_p=0.57_{-0.25}^{+0.79}\,M_J) orbiting a late M dwarf (M=0.14−0.06+0.20 M⊙)(M=0.14_{-0.06}^{+0.20}\,M_\odot), at a distance (D_L=1.23_{-0.43}^{+1.06}\,\kpc), and projected at 2.6±0.62.6\pm 0.6 times the snow line distance, i.e., a_{\rm snow}\equiv 2.7\,\au (M/M_\odot), This is the second Jovian planet discovered by KMTNet in its low cadence (0.4 hr−10.4\,{\rm hr}^{-1}) fields, demonstrating that this population will be well characterized based on survey-only microlensing data.Comment: 24 pages, 7 figures, 4 table

    KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane

    Get PDF
    We report the discovery of KMT-2018-BLG-1292Lb, a super-Jovian Mplanet=4.5±1.3 MJM_{\rm planet} = 4.5\pm 1.3\,M_J planet orbiting an F or G dwarf Mhost=1.5±0.4 M⊙M_{\rm host} = 1.5\pm 0.4\,M_\odot, which lies physically within {\cal O}(10\,\pc) of the Galactic plane. The source star is a heavily extincted AI∌5.2A_I\sim 5.2 luminous giant that has the lowest Galactic latitude, b=−0.28∘b=-0.28^\circ, of any planetary microlensing event. The relatively blue blended light is almost certainly either the host or its binary companion, with the first explanation being substantially more likely. This blend dominates the light at II band and completely dominates at RR and VV bands. Hence, the lens system can be probed by follow-up observations immediately, i.e., long before the lens system and the source separate due to their relative proper motion. The system is well characterized despite the low cadence Γ=0.15\Gamma=0.15--0.20 hr−10.20\,{\rm hr^{-1}} of observations and short viewing windows near the end of the bulge season. This suggests that optical microlensing planet searches can be extended to the Galactic plane at relatively modest cost.Comment: 35 pages, 3 Tables, 8 figure

    OGLE-2016-BLG-1227L: A Wide-separation Planet from a Very Short-timescale Microlensing Event

    Get PDF
    We present the analysis of the microlensing event OGLE-2016-BLG-1227. The light curve of this short-duration event appears to be a single-lens event affected by severe finite-source effects. Analysis of the light curve based on single-lens single-source (1L1S) modeling yields very small values of the event timescale, t_E ∌ 3.5 days, and the angular Einstein radius, Ξ_E ∌ 0.009 mas, making the lens a candidate of a free-floating planet. Close inspection reveals that the 1L1S solution leaves small residuals with amplitude ΔI â‰Č 0.03 mag. We find that the residuals are explained by the existence of an additional widely-separated heavier lens component, indicating that the lens is a wide-separation planetary system rather than a free-floating planet. From Bayesian analysis, it is estimated that the planet has a mass of _p = 0.79^(+1.30)_(−0.39) M_J and it is orbiting a low-mass host star with a mass of M_(host) = 0.10+0.17−0.05 M_⊙ located with a projected separation of a_ = 3.4^(+2.1)_(−1.0) au. The planetary system is located in the Galactic bulge with a line-of-sight separation from the source star of D_(LS) = 1.21^(+0.96)_(−0.63) kpc. The event shows that there are a range of deviations in the signatures of host stars for apparently isolated planetary lensing events and that it is possible to identify a host even when a deviation is subtle
    • 

    corecore