231 research outputs found
Development, Implementation, and Application of an Improved Protocol for the Performance Evaluation of Regulatory Photochemical Air Quality Modeling
Ozone is a secondary pollutant resulting from complex reactions of two precursors: nitrogen oxides (NOX), and volatile organic compounds (VOCs) under ozone-conducive meteorological conditions. Thus, the ozone modeling becomes complex and needs rigorous model performance evaluations (MPE) before the modeling results are used for air quality decisions. In the past regulatory ozone modeling, however, virtually all MPE practices were over-simplified by following the EPA's current MPE method. That is, modelers cannot answer the most important question in applying air quality models for ozone decision-making processes with the EPA's MPE method: "why should I believe this modeling?" In this study I investigated a solution by integrating the theoretical advances of MPE for environmental modeling with my practical knowledge in regulatory ozone modeling. As a result, I developed an MPE method with which modelers must (1) gather and examine graphical/statistical measures in a systematic manner, (2) conduct in-depth analyses with respect to potential ozone control options, and (3) report their performance assessments explicitly in light of policy questions. Because the existing analysis tools showed significant shortcomings in implementing the new MPE method, a new tool was developed to exercise the new MPE method efficiently. With the new tool, modelers can accomplish MPE tasks necessitated by the new MPE method in a timely manner. iii The Houston-Galveston Mid-Course Review (HGMCR) modeling was re-evaluated as the case study to demonstrate the advantages of new MPE method. I could reveal that the HGMCR modeling showed significantly low reliability even though the model could pass the majority of EPA's simple statistical tests. That is, the model showed significantly high biases in winds, NOX, and VOCs. Two major roots of high biases were identified: (1) the highly reactive VOCs (HRVOC) adjustment that was not scientifically defensible and (2) the insufficient modeling grid resolution with respect to the nature of ozone problems in Houston. Ultimately, the application of new MPE method led me to develop an alternative modeling case with which I showed that the alternative case could be used in a limited way to test a certain type of HRVOC control strategies by reducing VOCs biases
Limits of Binaries That Can Be Characterized by Gravitational Microlensing
Due to the high efficiency of planet detections, current microlensing planet
searches focus on high-magnification events. High-magnification events are
sensitive to remote binary companions as well and thus a sample of
wide-separation binaries are expected to be collected as a byproduct. In this
paper, we show that characterizing binaries for a portion of this sample will
be difficult due to the degeneracy of the binary-lensing parameters. This
degeneracy arises because the perturbation induced by the binary companion is
well approximated by the Chang-Refsdal lensing for binaries with separations
greater than a certain limit. For binaries composed of equal mass lenses, we
find that the lens binarity can be noticed up to the separations of
times of the Einstein radius corresponding to the mass of each lens. Among
these binaries, however, we find that the lensing parameters can be determined
only for a portion of binaries with separations less than times of
the Einstein radius.Comment: 5 pages, 3 figures, 1 tabl
Microlensing Detections of Planets in Binary Stellar Systems
We demonstrate that microlensing can be used for detecting planets in binary
stellar systems. This is possible because in the geometry of planetary binary
systems where the planet orbits one of the binary component and the other
binary star is located at a large distance, both planet and secondary companion
produce perturbations at a common region around the planet-hosting binary star
and thus the signatures of both planet and binary companion can be detected in
the light curves of high-magnification lensing events. We find that identifying
planets in binary systems is optimized when the secondary is located in a
certain range which depends on the type of the planet. The proposed method can
detect planets with masses down to one tenth of the Jupiter mass in binaries
with separations <~ 100 AU. These ranges of planet mass and binary separation
are not covered by other methods and thus microlensing would be able to make
the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma
KMT-2016-BLG-1107: A New Hollywood-Planet Close/Wide Degeneracy
We show that microlensing event KMT-2016-BLG-1107 displays a new type of
degeneracy between wide-binary and close-binary Hollywood events in which a
giant-star source envelops the planetary caustic. The planetary anomaly takes
the form of a smooth, two-day "bump" far out on the falling wing of the light
curve, which can be interpreted either as the source completely enveloping a
minor-image caustic due to a close companion with mass ratio , or
partially enveloping a major-image caustic due to a wide companion with
. The best estimates of the companion masses are both in the planetary
regime ( and ) but differ by an even larger factor than the mass ratios due to
different inferred host masses. We show that the two solutions can be
distinguished by high-resolution imaging at first light on next-generation
("30m") telescopes. We provide analytic guidance to understand the conditions
under which this new type of degeneracy can appear.Comment: 23 pages, 7 figures, accepted for publication in A
KMT-2018-BLG-1990Lb: A Nearby Jovian Planet From A Low-Cadence Microlensing Field
We report the discovery and characterization of KMT-2018-BLG-1990Lb, a Jovian
planet orbiting a late M dwarf
, at a distance
(D_L=1.23_{-0.43}^{+1.06}\,\kpc), and projected at times the
snow line distance, i.e., a_{\rm snow}\equiv 2.7\,\au (M/M_\odot), This is
the second Jovian planet discovered by KMTNet in its low cadence () fields, demonstrating that this population will be well
characterized based on survey-only microlensing data.Comment: 24 pages, 7 figures, 4 table
KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane
We report the discovery of KMT-2018-BLG-1292Lb, a super-Jovian planet orbiting an F or G dwarf , which lies physically within {\cal O}(10\,\pc) of the
Galactic plane. The source star is a heavily extincted luminous
giant that has the lowest Galactic latitude, , of any planetary
microlensing event. The relatively blue blended light is almost certainly
either the host or its binary companion, with the first explanation being
substantially more likely. This blend dominates the light at band and
completely dominates at and bands. Hence, the lens system can be probed
by follow-up observations immediately, i.e., long before the lens system and
the source separate due to their relative proper motion. The system is well
characterized despite the low cadence -- of
observations and short viewing windows near the end of the bulge season. This
suggests that optical microlensing planet searches can be extended to the
Galactic plane at relatively modest cost.Comment: 35 pages, 3 Tables, 8 figure
- âŠ