6 research outputs found

    Functional Relationships between the Hippocampus and Dorsomedial Striatum in Learning a Visual Scene-Based Memory Task in Rats

    Get PDF
    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies

    Functional Relationships between the Hippocampus and Dorsomedial Striatum in Learning a Visual Scene-Based Memory Task in Rats

    Get PDF
    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at, but not at, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in theDMSthan inCA1before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at frequencies.121311Nsciescopu

    Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea

    No full text
    Organic matter in lakes is categorized into allochthonous organic matter, such as leaves and sewage effluent, and autochthonous organic matter, generated by microorganisms within the water system. In this study, organic matter composition was analyzed using UV-vis spectroscopy and liquid chromatography-organic carbon detection (LC-OCD). Several allochthonous natural organic matter substances were collected including leaves, green leaves, forest soils, and paddy soils. The organic matter composition analysis in our study sites revealed that humic substances comprised the highest proportion (36.5–42.3%). Also, individual samples at each site exhibited distinct characteristics. This study used a humic substance-diagram (HS-diagram) and principal component analysis (PCA) to trace the sources affecting the river water quality and identify their origins. The humic substances of soil origin predominantly influenced the water quality, with the impact of organic matter significantly pronounced during the July rainfall period. Compared with the PCA results, the contribution of the humic substance (HS, 48.9%) and building block (BB, 42.0%) indices appeared higher between June and July in summer, likely due to non-degradable substances released by heavy rain. In fall, the contribution of low molecular weight neutrals increased from 71.2% to 85.2%, owing to a humic substance influx and decomposition. This study demonstrated the application of estimating the relative contributions of source materials in lakes utilized for drinking and agricultural water to identify sources, aiding in the development of efficient watershed management plans
    corecore