198 research outputs found
Alien Registration- Buzza, Elsie M. (Brownville, Piscataquis County)
https://digitalmaine.com/alien_docs/10795/thumbnail.jp
Comportamento de genótipos de canola em Maringá em 2003.
bitstream/CNPT-2010/40480/1/p-co115.pd
Interpretación errónea del concepto de entropÃa
Background
Cetylpyridinium chloride (CPC) and sodium fluoride augment oral hygiene by inactivating bacteria and inhibiting enamel demineralisation, respectively. However, there are few reports in the literature documenting the antibacterial efficacy of their combined use in mouthrinses. We have used six experimental systems to compare the antibacterial effects of mouthrinses containing 0.075 % CPC (test rinse, TR) or 0.075 % CPC with sodium fluoride (test fluoride rinse, TFR).
Results
Effects against planktonic bacteria were determined using viable counting (for Streptococcus mutans and salivary bacteria), a redox dye (for Actinomyces viscosus and salivary bacteria) and viable counting (for ex vivo oral rinses). Effects against saliva-derived biofilms were quantified using confocal microscopy and differential viable counting. Inhibition of biofilm formation was evaluated by pre-treating hydroxyapatite coupons with mouthrinses prior to inoculation. Otherwise-identical controls without CPC (control rinse and control fluoride rinse, CR and CFR, respectively), were included throughout. Compared to the controls, TFR and TR demonstrated significant antimicrobial effects in the redox assays, by viable counts (>3 log reductions) and in oral rinse samples (>1.25 log reductions, p 3 log difference, p < 0.05). Overall, there were no consistent differences in the activities of TR and TFR.
Conclusions
Sodium fluoride did not influence the antibacterial and anti-biofilm potency of CPC-containing formulations, supporting the combined use of CPC and sodium fluoride in mouthrinses to control oral bacteria and protect tooth enamel
Density functional theory for the crystallization of two-dimensional dipolar colloidal alloys
Two-dimensional mixtures of dipolar colloidal particles with different dipole moments exhibit extremely rich self-assembly behaviour and are relevant to a wide range of experimental systems, including charged and super-paramagnetic colloids at liquid interfaces. However, there is a gap in our understanding of the crystallization of these systems because existing theories such as integral equation theory and lattice sum methods can only be used to study the high temperature fluid phase and the zero-temperature crystal phase, respectively. In this paper we bridge this gap by developing a density functional theory (DFT), valid at intermediate temperatures, in order to study the crystallization of one and two-component dipolar colloidal monolayers. The theory employs a series expansion of the excess Helmholtz free energy functional, truncated at second order in the density, and taking as input highly accurate bulk fluid direct correlation functions from simulation. Although truncating the free energy at second order means that we cannot determine the freezing point accurately, our approach allows us to calculate \emph{ab initio} both the density profiles of the different species and the symmetry of the final crystal structures. Our DFT predicts hexagonal crystal structures for one-component systems, and a variety of superlattice structures for two-component systems, including those with hexagonal and square symmetry, in excellent agreement with known results for these systems. The theory also provides new insights into the structure of two-component systems in the intermediate temperature regime where the small particles remain molten but the large particles are frozen on a regular lattice
Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications
Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid substrates is either difficult to scale up or have limited possibilities for further modification after assembly. The aim of this paper is to use the adsorption kinetics of cylindrical nanorods at a liquid interface as a novel route for assembling vertically aligned nanorod arrays that overcomes these problems. Specifically, we model the adsorption kinetics of the particle using Langevin dynamics coupled to a finite element model, accurately capturing the deformation of the liquid meniscus and particle friction coefficients during adsorption. We find that the final orientation of the cylindrical nanorod is determined by their initial attack angle when they contact the liquid interface, and that the range of attack angles leading to the end-on state is maximised when nanorods approach the liquid interface from the bulk phase that is more energetically favorable. In the absence of an external field, only a fraction of adsorbing nanorods end up in the end-on state (<=40% even for nanorods approaching from the energetically favourable phase). However, by pre-aligning the metallic nanorods with experimentally achievable electric fields, this fraction can be effectively increased to 100%. Using nanophotonic calculations, we also demonstrate that the resultant vertically aligned structures can be used as epsilon-near-zero and hyperbolic metamaterials. Our kinetic assembly method is applicable to nanorods with a range of diameters, aspect ratios and materials and therefore represents a versatile, low-cost and powerful platform for fabricating vertically aligned nanorods for metamaterial applications
A Model for the Elasticity of Compressed Emulsions
We present a new model to describe the unusual elastic properties of
compressed emulsions. The response of a single droplet under compression is
investigated numerically for different Wigner-Seitz cells. The response is
softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective inter-droplet potential which
is used to determine the elastic response of a monodisperse collection of
disordered droplets as a function of volume fraction. Our results are in
excellent agreement with recent experiments. This suggests that anharmonicity,
together with disorder, are responsible for the quasi-linear increase of
and observed at .Comment: RevTeX with psfig-included figures and a galley macr
Adsorption trajectories of nonspherical particles at liquid interfaces
The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dynamics of ellipsoidal colloids at a liquid interface. Interfacial deformations are included by coupling our Langevin dynamics to a finite element model while transient contact line pinning due to nanoscale defects on the particle surface is encoded into our model by renormalizing particle friction coefficients and using dynamic contact angles relevant to the adsorption timescale. Our simple model reproduces the monotonic variation of particle orientation with time that is observed experimentally and is also able to quantitatively model the adsorption dynamics for some experimental ellipsoidal systems but not others. However, even for the latter case, our model accurately captures the adsorption trajectory (i.e., particle orientation versus height) of the particles. Our study clarifies the subtle interplay between capillary, viscous, and contact line forces in determining the wetting dynamics of micron-scale objects, allowing us to design more efficient assembly processes for complex particles at liquid interfaces
Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces
The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials
Immunotherapeutic targeting of membrane Hsp70-expressing tumors using recombinant human granzyme B
Background: We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner
Deformation of Small Compressed Droplets
We investigate the elastic properties of small droplets under compression.
The compression of a bubble by two parallel plates is solved exactly and it is
shown that a lowest-order expansion of the solution reduces to a form similar
to that obtained by Morse and Witten. Other systems are studied numerically and
results for configurations involving between 2 and 20 compressing planes are
presented. It is found that the response to compression depends on the number
of planes. The shear modulus is also calculated for common lattices and the
stability crossover between f.c.c.\ and b.c.c.\ is discussed.Comment: RevTeX with psfig-included figures and a galley macr
- …