103 research outputs found

    Long-Range Effects in Layered Spin Structures

    Full text link
    We study theoretically layered spin systems where long-range dipolar interactions play a relevant role. By choosing a specific sample shape, we are able to reduce the complex Hamiltonian of the system to that of a much simpler coupled rotator model with short-range and mean-field interactions. This latter model has been studied in the past because of its interesting dynamical and statistical properties related to exotic features of long-range interactions. It is suggested that experiments could be conducted such that within a specific temperature range the presence of long-range interactions crucially affect the behavior of the system

    Describing general cosmological singularities in Iwasawa variables

    Full text link
    Belinskii, Khalatnikov, and Lifshitz (BKL) conjectured that the description of the asymptotic behavior of a generic solution of Einstein equations near a spacelike singularity could be drastically simplified by considering that the time derivatives of the metric asymptotically dominate (except at a sequence of instants, in the `chaotic case') over the spatial derivatives. We present a precise formulation of the BKL conjecture (in the chaotic case) that consists of basically three elements: (i) we parametrize the spatial metric gijg_{ij} by means of \it{Iwasawa variables} βa,Nai\beta^a, {\cal N}^a{}_i); (ii) we define, at each spatial point, a (chaotic) \it{asymptotic evolution system} made of ordinary differential equations for the Iwasawa variables; and (iii) we characterize the exact Einstein solutions β,N\beta, {\cal{N}} whose asymptotic behavior is described by a solution β[0],N[0]\beta_{[0]}, {\cal N}_{[0]} of the previous evolution system by means of a `\it{generalized Fuchsian system}' for the differenced variables βˉ=ββ[0]\bar \beta = \beta - \beta_{[0]}, Nˉ=NN[0]\bar {\cal N} = {\cal N} - {\cal N}_{[0]}, and by requiring that βˉ\bar \beta and Nˉ\bar {\cal N} tend to zero on the singularity. We also show that, in spite of the apparently chaotic infinite succession of `Kasner epochs' near the singularity, there exists a well-defined \it{asymptotic geometrical structure} on the singularity : it is described by a \it{partially framed flag}. Our treatment encompasses Einstein-matter systems (comprising scalar and p-forms), and also shows how the use of Iwasawa variables can simplify the usual (`asymptotically velocity term dominated') description of non-chaotic systems.Comment: 50 pages, 4 figure

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    Pure type I supergravity and DE(10)

    Get PDF
    We establish a dynamical equivalence between the bosonic part of pure type I supergravity in D=10 and a D=1 non-linear sigma-model on the Kac-Moody coset space DE(10)/K(DE(10)) if both theories are suitably truncated. To this end we make use of a decomposition of DE(10) under its regular SO(9,9) subgroup. Our analysis also deals partly with the fermionic fields of the supergravity theory and we define corresponding representations of the generalized spatial Lorentz group K(DE(10)).Comment: 28 page

    K(E10), Supergravity and Fermions

    Get PDF
    We study the fermionic extension of the E10/K(E10) coset model and its relation to eleven-dimensional supergravity. Finite-dimensional spinor representations of the compact subgroup K(E10) of E(10,R) are studied and the supergravity equations are rewritten using the resulting algebraic variables. The canonical bosonic and fermionic constraints are also analysed in this way, and the compatibility of supersymmetry with local K(E10) is investigated. We find that all structures involving A9 levels 0,1 and 2 nicely agree with expectations, and provide many non-trivial consistency checks of the existence of a supersymmetric extension of the E10/K(E10) coset model, as well as a new derivation of the `bosonic dictionary' between supergravity and coset variables. However, there are also definite discrepancies in some terms involving level 3, which suggest the need for an extension of the model to infinite-dimensional faithful representations of the fermionic degrees of freedom.Comment: 50 page

    Models with short and long-range interactions: phase diagram and reentrant phase

    Full text link
    We study the phase diagram of two different Hamiltonians with competiting local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example, the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min-max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, in a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first order phase transitions with ensemble inequivalence, as one parameter is varied continuously

    On the effectiveness of mixing in violent relaxation

    Full text link
    Relaxation processes in collisionless dynamics lead to peculiar behavior in systems with long-range interactions such as self-gravitating systems, non-neutral plasmas and wave-particle systems. These systems, adequately described by the Vlasov equation, present quasi-stationary states (QSS), i.e. long lasting intermediate stages of the dynamics that occur after a short significant evolution called "violent relaxation". The nature of the relaxation, in the absence of collisions, is not yet fully understood. We demonstrate in this article the occurrence of stretching and folding behavior in numerical simulations of the Vlasov equation, providing a plausible relaxation mechanism that brings the system from its initial condition into the QSS regime. Area-preserving discrete-time maps with a mean-field coupling term are found to display a similar behaviour in phase space as the Vlasov system.Comment: 10 pages, 11 figure

    Experimental perspectives for systems based on long-range interactions

    Full text link
    The possibility of observing phenomena peculiar to long-range interactions, and more specifically in the so-called Quasi-Stationary State (QSS) regime is investigated within the framework of two devices, namely the Free-Electron Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS dynamics has been mostly studied using the Hamiltonian Mean-Field (HMF) toy model, demonstrating in particular the presence of first versus second order phase transitions from magnetized to unmagnetized regimes in the case of HMF. Here, we give evidence of the strong connections between the HMF model and the dynamics of the two mentioned devices, and we discuss the perspectives to observe some specific QSS features experimentally. In particular, a dynamical analog of the phase transition is present in the FEL and in the CARL in its conservative regime. Regarding the dissipative CARL, a formal link is established with the HMF model. For both FEL and CARL, calculations are performed with reference to existing experimental devices, namely the FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the CARL system at LENS in Florence (Italy)

    Embeddings of hyperbolic Kac-Moody algebras into E10\mathbf{E_{10}}}

    Full text link
    We show that the rank 10 hyperbolic Kac-Moody algebra E10E_{10} contains every simply laced hyperbolic Kac-Moody algebra as a Lie subalgebra. Our method is based on an extension of earlier work of Feingold and Nicolai.Comment: 10 pages. to appear in Letters in Mathematical Physic
    corecore