2,700 research outputs found
Imaging X-ray, Optical, and Infrared Observations of the Transient Anomalous X-ray Pulsar XTE J1810-197
We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a
5.54s pulsar discovered by Ibrahim et al. (2003) in recent RXTE observations.
In a set of short exposures with the Chandra HRC camera we detect a strongly
modulated signal (55+/-4% pulsed fraction) with the expected period located at
(J2000) 18:09:51.08, -19:43:51.7, with a uncertainty radius of 0.6 arcsec (90%
C.L.). Spectra obtained with XMM-Newton are well fitted by a two-component
model that typically describes anomalous X-ray pulsars (AXPs), an absorbed
blackbody plus power law with parameters kT = 0.67+/-0.01 keV, Gamma=3.7+/-0.2,
N_H=(1.05+/-0.05)E22 cm^-2, and Fx(0.5-10 keV) = 3.98E-11 ergs/cm2/s.
Alternatively, a 2T blackbody fit is just as acceptable. The location of CXOU
J180951.1-194351 is consistent with a point source seen in archival Einstein,
Rosat, & ASCA images, when its flux was nearly two orders-of-magnitude fainter,
and from which no pulsations are found. The spectrum changed dramatically
between the "quiescent" and "active" states, the former can be modeled as a
softer blackbody. Using XMM timing data, we place an upper limit of 0.03 lt-s
on any orbital motion in the period range 10m-8hr. Optical and infrared images
obtained on the SMARTS 1.3m telescope at CTIO show no object in the Chandra
error circle to limits V=22.5, I=21.3, J=18.9, & K=17.5. Together, these
results argue that CXOU J180951.1-194351 is an isolated neutron star, one most
similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197
in various states of luminosity is important for understanding and possibly
unifying a growing class of isolated, young neutron stars that are not powered
by rotation.Comment: 12 pages, 7 figures, AAS LaTex, uses emulateapj5.sty. Updated to
include additional archival data and a new HRC observation. To appear in The
Astrophysical Journa
Pool boiling on modified surfaces using R-123
This article has been made available through the Brunel Open Access Publishing Fund.Saturated pool boiling of R-123 was investigated for five horizontal copper surfaces modified by different treatments, namely, an emery-polished surface, a fine sandblasted surface, a rough sandblasted surface, an electron beam-enhanced surface, and a sintered surface. Each 40-mm-diameter heating surface formed the upper face of an oxygen-free copper block, electrically heated by embedded cartridge heaters. The experiments were performed from the natural convection regime through nucleate boiling up to the critical heat flux, with both increasing and decreasing heat flux, at 1.01 bar, and additionally at 2 bar and 4 bar for the emery-polished surface. Significant enhancement of heat transfer with increasing surface modification was demonstrated, particularly for the electron beam-enhanced and sintered surfaces. The emery-polished and sandblasted surface results are compared with nucleate boiling correlations and other published data. © 2014 Syed W. Ahmad, John S. Lewis, Ryan J. McGlen, and Tassos G. Karayiannis Published with license by Taylor & Francis
The 2002 Outburst of the Black-Hole X-ray Binary 4U 1543-47: Optical and Infrared Light Curves
We have obtained simultaneous optical and near infrared observations of 4U
1543-47 during its 2002 outburst. The most striking feature of the outburst
light curve is the secondary maximum which appears after the object transitions
into the low-hard state. This secondary maximum is much stronger in the
infrared bands than optical. We suggest that the origin of the secondary
maximum flux may be synchrotron radiation associated with a jet. Close infrared
monitoring may lead to reliable triggers for simultaneous multiwavelength
campaigns to study jet formation processes.Comment: Accepted for publication in Ap
Formation of the compact jets in the black hole GX 339-4
Galactic black hole binaries produce powerful outflows with emit over almost
the entire electromagnetic spectrum. Here, we report the first detection with
the Herschel observatory of a variable far-infrared source associated with the
compact jets of the black hole transient GX 339-4 during the decay of its
recent 2010-2011 outburst, after the transition to the hard state. We also
outline the results of very sensitive radio observations conducted with the
Australia Telescope Compact Array, along with a series of near-infrared,
optical (OIR) and X-ray observations, allowing for the first time the
re-ignition of the compact jets to be observed over a wide range of
wavelengths. The compact jets first turn on at radio frequencies with an
optically thin spectrum that later evolves to optically thick synchrotron
emission. An OIR reflare is observed about ten days after the onset of radio
and hard X-ray emission, likely reflecting the necessary time to build up
enough density, as well as to have acceleration (e.g. through shocks) along an
extended region in the jets. The Herschel measurements are consistent with an
extrapolation of the radio inverted power-law spectrum, but they highlight a
more complex radio to OIR spectral energy distribution for the jets.Comment: Accepted for publication in MNRAS Letter, 6 pages, 3 Figures + 1
online Tabl
Correlated variability in the blazar 3C 454.3
The blazar 3C 454.3 was revealed by the Fermi Gamma-ray Space Telescope to be
in an exceptionally high flux state in July 2008. Accordingly, we performed a
multi-wavelength monitoring campaign on this blazar using IR and optical
observations from the SMARTS telescopes, optical, UV and X-ray data from the
Swift satellite, and public-release gamma-ray data from Fermi. We find an
excellent correlation between the IR, optical, UV and gamma-ray light curves,
with a time lag of less than one day. The amplitude of the infrared variability
is comparable to that in gamma-rays, and larger than at optical or UV
wavelengths. The X-ray flux is not strongly correlated with either the
gamma-rays or longer wavelength data. These variability characteristics find a
natural explanation in the external Compton model, in which electrons with
Lorentz factor gamma~10^(3-4) radiate synchrotron emission in the
infrared-optical and also scatter accretion disk or emission line photons to
gamma-ray energies, while much cooler electrons (gamma~10^(1-2)) produce X-rays
by scattering synchrotron or other ambient photons.Comment: 7 pages, 3 figures, submitted to ApJ Letter
Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems
Thermodynamic properties are presented for four magnetic impurity models
describing delocalized fermions scattering from a localized orbital at an
energy-dependent rate which vanishes precisely at the Fermi
level, . Specifically, it is assumed that for small ,
with . The cases and
describe dilute magnetic impurities in unconventional superconductors, ``flux
phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For
the nondegenerate Anderson model, the depression of the low-energy scattering
rate suppresses mixed valence in favor of local-moment behavior, and leads to a
marked reduction in the exchange coupling on entry to the local-moment regime,
with a consequent narrowing of the range of parameters within which the
impurity spin becomes Kondo-screened. The relationship between the Anderson
model and the exactly screened Kondo model with power-law exchange is examined.
The intermediate-coupling fixed point identified in the latter model by Withoff
and Fradkin (WF) has clear signatures in the thermodynamic properties and in
the local magnetic response of the impurity. The underscreened,
impurity-spin-one Kondo model and the overscreened, two-channel Kondo model
both exhibit a conditionally stable intermediate-coupling fixed point in
addition to unstable fixed points of the WF type. In all four models, the
presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR
formatting changes. To appear in Phys. Rev.
Sonically-enhanced widgets: comments on Brewster and Clarke, ICAD 1997
This paper presents a review of the research surrounding the paper “The Design and Evaluation of a Sonically Enhanced Tool Palette” by Brewster and Clarke from ICAD 1997. A historical perspective is given followed by a discussion of how this work has fed into current developments in the area
- …