1,495 research outputs found

    IgM-producing tumors in the BALB/c mouse: a model for B-cell maturation

    Get PDF
    Five adjuvant induced BALB/c tumors producing IgM—McPc 1748, W 3469, TEPC 183, McPc 774, and Y 5781—were characterized morphologically by electron microscopy, analysis of the distribution of surface-bound and intracytoplasmic IgM using immunofluorescence, and by biochemical study of IgM synthesis, turnover, and secretion. The cells of different tumors appear to represent different stages in B-cell maturation when compared to normal, lipopolysaccharide-stimulated B cells. Thus, McPc 1748 tumor cells resemble 10–25-h stimulated normal B cells, 3469 cells resemble 20–35-h stimulated B cells, TEPC 183 cells resemble 45–65-h stimulated B cells, Y 5781 cells resemble 80–110-h stimulated B cells, and McPc 774 cells resemble 100–130-h stimulated B cells

    The prevalence and distribution of the amyloidogenic transthyretin (TTR) V122I allele in Africa

    Get PDF
    Transthyretin (TTR) pV142I (rs76992529-A) is one of the 113 variants in the human TTR gene associated with systemic amyloidosis. It results from a G to A transition at a CG dinucleotide in the codon for amino acid 122 of the mature protein (TTR V122I). The allele frequency is 0.0173 in African Americans

    Galileo mission planning for Low Gain Antenna based operations

    Get PDF
    The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include quantifying resource or capabilities to be allocated, prioritizing science observations and estimating resource needs for each, working inter-and intra-orbit trades of these resources among the Project elements, and planning real-time science activity. The first major mission planning activity, a high level, orbit-by-orbit allocation of resources among science objectives, has already been completed; and results are illustrated in the paper. To make efficient use of limited resources, Galileo mission planning will rely on automated mission planning tools capable of dealing with interactions among time-varying downlink capability, real-time science and engineering data transmission, and playback of recorded data. A new generic mission planning tool is being adapted for this purpose

    Transcriptomic changes in the frontal cortex associated with paternal age

    Get PDF
    Advanced paternal age is robustly associated with several human neuropsychiatric disorders, particularly autism. The precise mechanism(s) mediating the paternal age effect are not known, but they are thought to involve the accumulation of de novo (epi)genomic alterations. In this study we investigate differences in the frontal cortex transcriptome in a mouse model of advanced paternal age

    Linking White and Grey Matter in Schizophrenia: Oligodendrocyte and Neuron Pathology in the Prefrontal Cortex

    Get PDF
    Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia

    A continuous isotropic-nematic liquid crystalline transition of F-actin solutions

    Full text link
    The phase transition from the isotropic (I) to nematic (N) liquid crystalline suspension of F-actin of average length 3 μ3~\mum or above was studied by local measurements of optical birefringence and protein concentration. Both parameters were detected to be continuous in the transition region, suggesting that the I-N transition is higher than 1st order. This finding is consistent with a recent theory by Lammert, Rokhsar & Toner (PRL, 1993, 70:1650), predicting that the I-N transition may become continuous due to suppression of disclinations. Indeed, few line defects occur in the aligned phase of F-actin. Individual filaments in solutions of a few mg/ml F-actin undergo fast translational diffusion along the filament axis, whereas both lateral and rotational diffusions are suppressed.Comment: 4 pages with 4 figures. Submitted to Physical Review Letter

    Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD) in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example <it>Fmr1 </it>knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models.</p> <p>Methods</p> <p>To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes.</p> <p>Findings</p> <p>We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1) Changes in brain and neuronal morphology; (2) electrophysiological changes; (3) neurological changes; and (4) higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms.</p> <p>Conclusions</p> <p>The results indicated that mutations in ASD genes result in defined groups of changes in mouse models and support a broad neurobiological approach to phenotyping rodent models for ASD, with a focus on biochemistry and molecular biology, brain and neuronal morphology, and electrophysiology, as well as both neurological and additional behavioral analyses. Analysis of human phenotypes associated with these genes reinforced these conclusions, supporting face validity for these approaches to phenotyping of ASD models. Such phenotyping is consistent with the successes in <it>Fmr1 </it>knockout mice, in which morphological changes recapitulated human findings and electrophysiological deficits resulted in molecular insights that have since led to clinical trials. We propose both broad domains and, based on expert review of more than 50 publications in each of the four neurobiological domains, specific tests to be applied to rodent models of ASD.</p

    Growth cone behavior and production of traction force.

    Full text link

    Categorical perception of tactile distance

    Get PDF
    The tactile surface forms a continuous sheet covering the body. And yet, the perceived distance between two touches varies across stimulation sites. Perceived tactile distance is larger when stimuli cross over the wrist, compared to when both fall on either the hand or the forearm. This effect could reflect a categorical distortion of tactile space across body-part boundaries (in which stimuli crossing the wrist boundary are perceptually elongated) or may simply reflect a localised increased in acuity surrounding anatomical landmarks (in which stimuli near the wrist are perceptually elongated). We tested these two interpretations, by comparing a well-documented bias to perceive mediolateral tactile distances across the forearm/hand as larger than proximodistal ones along the forearm/hand at three different sites (hand, wrist, and forearm). According to the ‘categorical’ interpretation, tactile distances should be elongated selectively in the proximodistal axis thus reducing the anisotropy. According to the ‘localised acuity’ interpretation, distances will be perceptually elongated in the vicinity of the wrist regardless of orientation, leading to increased overall size without affecting anisotropy. Consistent with the categorical account, we found a reduction in the magnitude of anisotropy at the wrist, with no evidence of a corresponding specialized increase in precision. These findings demonstrate that we reference touch to a representation of the body that is categorically segmented into discrete parts, which consequently influences the perception of tactile distance
    corecore