1,098 research outputs found

    Land-surface modelling in hydrological perspective – a review

    Get PDF
    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed

    Semantic Memory Functional MRI and Cognitive Function After Exercise Intervention in Mild Cognitive Impairment

    Get PDF
    Mild cognitive impairment (MCI) is associated with early memory loss, Alzheimer\u27s disease (AD) neuropathology, inefficient or ineffective neural processing, and increased risk for AD. Unfortunately, treatments aimed at improving clinical symptoms or markers of brain function generally have been of limited value. Physical exercise is often recommended for people diagnosed with MCI, primarily because of its widely reported cognitive benefits in healthy older adults. However, it is unknown if exercise actually benefits brain function during memory retrieval in MCI. Here, we examined the effects of exercise training on semantic memory activation during functional magnetic resonance imaging (fMRI). Seventeen MCI participants and 18 cognitively intact controls, similar in sex, age, education, genetic risk, and medication use, volunteered for a 12-week exercise intervention consisting of supervised treadmill walking at a moderate intensity. Both MCI and control participants significantly increased their cardiorespiratory fitness by approximately 10% on a treadmill exercise test. Before and after the exercise intervention, participants completed an fMRI famous name discrimination task and a neuropsychological battery, Performance on Trial 1 of a list-learning task significantly improved in the MCI participants. Eleven brain regions activated during the semantic memory task showed a significant decrease in activation intensity following the intervention that was similar between groups (p-values ranged 0.048 to 0.0001). These findings suggest exercise may improve neural efficiency during semantic memory retrieval in MCI and cognitively intact older adults, and may lead to improvement in cognitive function. Clinical trials are needed to determine if exercise is effective to delay conversion to AD

    Mesoscopic Fermi gas in a harmonic trap

    Full text link
    We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers. The dependence of the chemical potential, the specific heat and the density distribution on particle number and temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A, minor changes to figures and captions, corrected typo

    Analytical results for a trapped, weakly-interacting Bose-Einstein condensate under rotation

    Full text link
    We examine the problem of a repulsive, weakly-interacting and harmonically trapped Bose-Einstein condensate under rotation. We derive a simple analytic expression for the energy incorporating the interactions when the angular momentum per particle is between zero and one and find that the interaction energy decreases linearly as a function of the angular momentum in agreement with previous numerical and limiting analytical studies.Comment: 3 pages, RevTe

    Ground-State Properties of a Rotating Bose-Einstein Condensate with Attractive Interaction

    Full text link
    The ground state of a rotating Bose-Einstein condensate with attractive interaction in a quasi-one-dimensional torus is studied in terms of the ratio Îł\gamma of the mean-field interaction energy per particle to the single-particle energy-level spacing. The plateaus of quantized circulation are found to appear if and only if Îł<1\gamma<1 with the lengths of the plateaus reduced due to hybridization of the condensate over different angular-momentum states.Comment: 4 pages, 2 figures, Accepted for publication in Physical Reveiw Letter

    Does Physical Activity Influence Semantic Memory Activation in Amnestic Mild Cognitive Impairment?

    Get PDF
    The effect of physical activity (PA) on functional brain activation for semantic memory in amnestic mild cognitive impairment (aMCI) was examined using event-related functional magnetic resonance imaging during fame discrimination. Significantly greater semantic memory activation occurred in the left caudate of High- versus Low-PA patients, (P=0.03), suggesting PA may enhance memory-related caudate activation in aMCI

    Subtle temperature-induced changes in small molecule conformer dynamics-observed and quantified by NOE spectroscopy

    Get PDF
    NOE-distance relationships are shown to be sufficiently accurate to monitor very small changes in conformer populations in response to temperature (<0.5%/10 degrees C) - in good agreement with Boltzmann-predictions, illustrating the effectiveness of accurate NOE-distance measurements in obtaining high quality dynamics as well as structural information for small molecules

    Activity driven modeling of time varying networks

    Get PDF
    Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.Comment: 10 pages, 4 figure
    • …
    corecore