5,333 research outputs found
Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom
The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions
Lead extrusion analysis by finite volume method
Computational numerical simulation is nowadays largely applied in the design and analysis of metal forming process. Extrusion of metals is one main forming process largely applied in the manufacturing of metallic products or parts. Historically, the Finite Element Method has been applied for decades in metal extrusion analysis [4]. However, recently in the academy, there is a trend to use Finite Volume Method: literature suggests that metal flow by extrusion can be analyzed by the flow formulation [1, 2]. Thus, metal flow can be modelled such us an incompressible viscous fluid [2]. This hypothesis can be assumed because extrusion process is an isochoric process. The MacCormack Method is commonly used to simulate compressible fluid flow by the finite volume method [3]. However, metal extrusion and incompressible fluid flow do not present state equations for the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to obtain a consistent velocity and pressure fields [3]. Present work proposes a new numerical scheme to obtain information about metal flow in the extrusion process, in steady state. The governing equations were discretized by Finite Volume Method, using the Explicit MacCormack Method to structured and collocated mesh. The SIMPLE Method was applied to attain pressure-velocity coupling [3]. These new numerical scheme was applied to forward extrusion process of lead. The incompressible metal extrusion velocity fields achieved faster convergence and a good agreement with analytical and experimental results obtained from literature. The MacCormack Method applied for metals produced consistent results without the need of artificial viscosity as employed by the compressible flow simulation approaches. Furthermore, the present numerical results also suggest that MacCormack Method and SIMPLE can be applied in the solution of metal forming processes besides the traditional application for compressible fluid flow
Polarization switching and induced birefringence in InGaAsP multiple quantum wells at 1.5 mu m
We analyze the 1.5mum wavelength operation of a room temperature polarization switch based on electron spin dynamics in InGaAsP multiple quantum wells. An unexpected difference in response for left and right circularly polarized pump light in pump-probe measurements was discovered and determined to be caused by an excess carrier induced birefringence. Transient polarization rotation and ellipticity were measured as a function of time delay. (C) 2002 American Institute of Physics.</p
Aluminium extrusion analysis by the finite volume method
Present work proposes a novel numerical scheme to calculate stress and velocity fields of metal flow in axisymmetric extrusion process in steady state. Extrusion of aluminium is one main metal forming process largely applied in manufacturing bars and products with complex cross section shape. The upper-bound, slab, slip-line methods and more recently the numerical methods such as the Finite Element Method have been commonly applied in aluminium extrusion analysis. However, recently in the academy, the Finite Volume Method has been developed for metal flow analysis: literature suggests that extrusion of metals can be modelled by the flow formulation. Hence, metal flow can be mathematically modelled such us an incompressible non linear viscous fluid, owing to volume constancy and varying viscosity in metal forming. The governing equations were discretized by the Finite Volume Method, using the Explicit MacCormack Method in structured and collocated mesh. The MacCormack Method is commonly used to simulate compressible fluid flow by the finite volume method. However, metal plastic flow and incompressible fluid flow do not present state equations for the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to obtain a consistent velocity and pressure fields. The SIMPLE Method was applied to attain pressure-velocity coupling. This new numerical scheme was applied to forward hot extrusion process of an aluminium alloy. The metal extrusion velocity fields achieved fast convergence and a good agreement with experimental results. The MacCormack Method applied to metal extrusion produced consistent results without the need of artificial viscosity as employed by the compressible flow simulation approaches. Therefore, present numerical results also suggest that MacCormack method together with SIMPLE method can be applied in the solution of metal forming processes in addition to the traditional application for compressible fluid flow
Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters
The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters
An Advanced Photovoltaic Array Regulator Module
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given
A Modular PMAD System for Small Spacecraft
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given
Recommended from our members
Transversals as generating sets in finitely generated groups
We explore transversals of finite index subgroups of finitely generated groups. We show that when is a subgroup of a rank- group and has index at least in , we can construct a left transversal for which contains a generating set of size for ; this construction is algorithmic when is finitely presented. We also show that, in the case where has rank , there is a simultaneous left–right transversal for which contains a generating set of size for . We finish by showing that if is a subgroup of a rank- group with index less than , and contains no primitive elements of , then is normal in and .This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S000497271500098
Distortion and regulation characterization of a Mapham inverter
Output voltage Total Harmonic Distortion (THD) of a 20kHz, 6kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f sub s/f sub r, using the EASY5 engineering analysis system. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f sub s/f sub r ratio is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different than the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped
An intelligent, multi-transducer signal conditioning design for manufacturing applications
This paper describes a flexible, intelligent, high bandwidth, signal conditioning reference design and implementation, which is suitable for a wide range of force and displacement transducers in manufacturing applications. The flexibility inherent in the design has allowed more than 10 specialised transducer conditioning boards to be replaced by this single design, in a range of bespoke mechanical test equipment manufactured by the authors. The board is able to automatically reconfigure itself for a wide range of transducers and calibrate and balance the transducer. The range of transducers includes LVDT, AC/DC strain gauge and inductive bridges, and a range of standard industrial voltage current interface transducers. Further, with a minor lowcost addition to the transducer connector, the board is able to recognise the type of transducer, reconfigure itself and store the calibration data within the transducer, thereafter allowing a plugand-play operation as transducers are changed. The paper provides an example of the operation in typical manufacturing test application and illustrates the stability and noise performance of the design
- …