4 research outputs found

    Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds

    Get PDF
    Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population

    Handling stress of female common eiders during avian cholera outbreaks

    No full text
    Researchers often consider the importance of minimizing holding time during research activities; however, the long-term costs of such handling stress is rarely measured explicitly. As part of an ongoing study of common eiders (Somateria mollissima) at a breeding colony in East Bay, Southampton Island, Nunavut, we recorded duration of restraint for females captured during avian cholera epizootics (2007 and 2008) and monitored female fates (breeding probability, onset of laying, and survival) relative to holding time. Probability of death increased with holding time in 2007 from an estimated 0.05 for females held 20 min to 0.33 for females held for 150 min. In 2008, we responded by limiting holding time to <90 min and mortality was no longer positively correlated with holding time, although total mortality was greater due to increased severity of avian cholera. In both years, longer restraint durations delayed onset of egg-laying after capture by 0.5 days for each 10 min of additional restraint but did not prevent breeding. This delay of nest initiation did not enhance survival probability. Our results show that prolonged holding time can exacerbate mortality during epizootics and emphasize the importance of minimizing restraint time in wild birds, especially in the presence of diseases

    Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease

    No full text
    Fitness costs of reproduction are expected to be more pronounced when the environmental conditions deteriorate. We took advantage of a natural experiment to investigate the costs of reproduction among common eiders (Somateria mollissima) nesting at a site in the Arctic, where an avian cholera epizootic appeared at different magnitudes. We tested the predictions that larger reproductive effort (clutch size) is associated with lower survival or breeding probability the following year, and that this relationship was more pronounced under heightened exposure to the disease. Our results indicate that large clutch sizes were associated with lower survival of female eider ducks, but only when there was heightened exposure to avian cholera, as indexed by eider mortality on site. No cost was observed when cholera was absent or when lesser exposure was evident. This supports the hypothesis that fitness costs of high reproductive effort are higher under unfavourable conditions such as a disease epizootic, and further indicates that being a conservative breeder can increase survival probability, given the presence of a highly virulent disease

    Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds

    Get PDF
    Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population
    corecore