779 research outputs found
On High Explosive Launching of Projectiles for Shock Physics Experiments
The hydrodynamic operation of the `Forest Flyer' type of explosive launching
system for shock physics projectiles was investigated in detail using one- and
two-dimensional continuum dynamics simulations. The simulations were
insensitive to uncertainties in the material properties, and reproduced
measurements of the projectile. The most commonly-used variant, with an Al
alloy case, was predicted to produce a slightly curved projectile, subjected to
some shock heating, and likely exhibiting some porosity from tensile damage.
The flatness can be improved by using a case of lower shock impedance, such as
polymethyl methacrylate. High-impedance cases, including Al alloys but with
denser materials improving the launching efficiency, can be used if designed
according to the physics of oblique shock reflection. The tensile stress
induced in the projectile depends on the relative thickness of the explosive,
expansion gap, and projectile. The thinner the projectile with respect to the
explosive, the smaller the tensile stress. If the explosive is initiated with a
plane wave lens, the tensile stress is lower than for initiation with multiple
detonators over a plane. The previous plane wave lens designs did however
induce a tensile stress close to the spall strength of the projectile. The
tensile stress can be reduced by changes in the component thicknesses.
Experiments to verify the operation of explosively-launched projectiles should
attempt to measure porosity induced in the projectile: arrival time
measurements may be insensitive to porous regions caused by damaged or
recollected material
Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source
As typically implemented, single photon sources cannot be made to produce
single photons with high probability, while simultaneously suppressing the
probability of yielding two or more photons. Because of this, single photon
sources cannot really produce single photons on demand. We describe a
multiplexed system that allows the probabilities of producing one and more
photons to be adjusted independently, enabling a much better approximation of a
source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR
Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing
The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates™) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communitie
Practical free-space quantum key distribution over 1 km
A working free-space quantum key distribution (QKD) system has been developed
and tested over an outdoor optical path of ~1 km at Los Alamos National
Laboratory under nighttime conditions. Results show that QKD can provide secure
real-time key distribution between parties who have a need to communicate
secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters,
May 199
An arbitrated quantum signature scheme
The general principle for a quantum signature scheme is proposed and
investigated based on ideas from classical signature schemes and quantum
cryptography. The suggested algorithm is implemented by a symmetrical quantum
key cryptosystem and Greenberger-Horne-Zeilinger (GHZ) triplet states and
relies on the availability of an arbitrator. We can guarantee the unconditional
security of the algorithm, mostly due to the correlation of the GHZ triplet
states and the use of quantum one-time pads.Comment: 10 pages, no figures. Phys. Rev. A 65, (In press
Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment
Little is known about the structure of microbial communities in Sphagnum peatlands, and the potential effects of the increasing atmospheric C02 concentration on these communities are not known. We analyzed the structure of microbial communities in five Sphagnum-dominated peatlands across Europe and their response to C02 enrichment using miniFACE systems. After three growing seasons, Sphagnum samples were analyzed for heterotrophic bacteria, cyanobacteria, microalgae, heterotrophic flagellates, ciliates, testate amoebae, fungi, nematodes, and rotifers. Heterotrophic organisms dominated the microbial communities and together represented 78% to 97% of the total microbial biomass. Testate amoebae dominated the protozoan biomass. A canonical correspondence analysis revealed a significant correlation between the microbial community data and four environmental variables (Na+, DOC, water table depth, and DIN), reflecting continentality, hydrology, and nitrogen deposition gradients. Carbon dioxide enrichment modified the structure of microbial communities, but total microbial biomass was unaffected. The biomass of heterotrophic bacteria increased by 48%, and the biomass of testate amoebae decreased by 13%. These results contrast with the absence of overall effect on methane production or on the vegetation, but are in line with an increased below-ground vascular plant biomass at the same sites. We interpret the increase in bacterial biomass as a response to a C02-induced enhancement of Sphagnum exudation. The causes for the decrease of testate amoebae are unclear but could indicate a top-down rather than a bottom-up control on their densit
Theoretical efficient high capacity Quantum Key Distribution Scheme
A theoretical quantum key distribution scheme using EPR pairs is presented.
This scheme is efficient in that it uses all EPR pairs in distributing the key
except those chosen for checking eavesdroppers. The high capacity is achieved
because each EPR pair carries 2 bits of key code.Comment: 3 pages and 1 figure, to appear in Physical Review
- …
