1,039 research outputs found

    Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Get PDF
    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies

    Expression-Based Genome-Wide Association Study Links Vitamin D-Binding Protein With Autoantigenicity in Type 1 Diabetes.

    Get PDF
    Type 1 diabetes (T1D) is caused by autoreactive T cells that recognize pancreatic islet antigens and destroy insulin-producing β-cells. This attack results from a breakdown in tolerance for self-antigens, which is controlled by ectopic antigen expression in the thymus and pancreatic lymph nodes (PLNs). The autoantigens known to be involved include a set of islet proteins, such as insulin, GAD65, IA-2, and ZnT8. In an attempt to identify additional antigenic proteins, we performed an expression-based genome-wide association study using microarray data from 118 arrays of the thymus and PLNs of T1D mice. We ranked all 16,089 protein-coding genes by the likelihood of finding repeated differential expression and the degree of tissue specificity for pancreatic islets. The top autoantigen candidate was vitamin D-binding protein (VDBP). T-cell proliferation assays showed stronger T-cell reactivity to VDBP compared with control stimulations. Higher levels and frequencies of serum anti-VDBP autoantibodies (VDBP-Abs) were identified in patients with T1D (n = 331) than in healthy control subjects (n = 77). Serum vitamin D levels were negatively correlated with VDBP-Ab levels in patients in whom T1D developed during the winter. Immunohistochemical localization revealed that VDBP was specifically expressed in α-cells of pancreatic islets. We propose that VDBP could be an autoantigen in T1D

    Multiplex meta-analysis of RNA expression to identify genes with variants associated with immune dysfunction

    Get PDF
    ObjectiveWe demonstrate a genome-wide method for the integration of many studies of gene expression of phenotypically similar disease processes, a method of multiplex meta-analysis. We use immune dysfunction as an example disease process.DesignWe use a heterogeneous collection of datasets across human and mice samples from a range of tissues and different forms of immunodeficiency. We developed a method integrating Tibshirani's modified t-test (SAM) is used to interrogate differential expression within a study and Fisher's method for omnibus meta-analysis to identify differentially expressed genes across studies. The ability of this overall gene expression profile to prioritize disease associated genes is evaluated by comparing against the results of a recent genome wide association study for common variable immunodeficiency (CVID).ResultsOur approach is able to prioritize genes associated with immunodeficiency in general (area under the ROC curve = 0.713) and CVID in particular (area under the ROC curve = 0.643).ConclusionsThis approach may be used to investigate a larger range of failures of the immune system. Our method may be extended to other disease processes, using RNA levels to prioritize genes likely to contain disease associated DNA variants

    Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism

    Full text link
    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For this, we generate synthetic metabolic profiles for benchmarking purposes based on a well-established model for red blood cell metabolism. A variety of data sets is generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We apply ARACNE, a mainstream transcriptional networks reverse engineering algorithm, to these data sets and observe performance comparable to that obtained in the transcriptional domain, for which the algorithm was originally designed.Comment: 14 pages, 3 figures. Presented at the DIMACS Workshop on Dialogue on Reverse Engineering Assessment and Methods (DREAM), Sep 200

    A Classifier-based approach to identify genetic similarities between diseases

    Get PDF
    Motivation: Genome-wide association studies are commonly used to identify possible associations between genetic variations and diseases. These studies mainly focus on identifying individual single nucleotide polymorphisms (SNPs) potentially linked with one disease of interest. In this work, we introduce a novel methodology that identifies similarities between diseases using information from a large number of SNPs. We separate the diseases for which we have individual genotype data into one reference disease and several query diseases. We train a classifier that distinguishes between individuals that have the reference disease and a set of control individuals. This classifier is then used to classify the individuals that have the query diseases. We can then rank query diseases according to the average classification of the individuals in each disease set, and identify which of the query diseases are more similar to the reference disease. We repeat these classification and comparison steps so that each disease is used once as reference disease

    Data-driven integration of epidemiological and toxicological data to select candidate interacting genes and environmental factors in association with disease

    Get PDF
    Motivation: Complex diseases, such as Type 2 Diabetes Mellitus (T2D), result from the interplay of both environmental and genetic factors. However, most studies investigate either the genetics or the environment and there are a few that study their possible interaction in context of disease. One key challenge in documenting interactions between genes and environment includes choosing which of each to test jointly. Here, we attempt to address this challenge through a data-driven integration of epidemiological and toxicological studies. Specifically, we derive lists of candidate interacting genetic and environmental factors by integrating findings from genome-wide and environment-wide association studies. Next, we search for evidence of toxicological relationships between these genetic and environmental factors that may have an etiological role in the disease. We illustrate our method by selecting candidate interacting factors for T2D

    Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations

    Get PDF
    BACKGROUND: Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. RESULTS: An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. CONCLUSION: Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data
    corecore