50 research outputs found

    Low-cost and compact single-photon counter based on a CMOS SPAD smart pixel

    Get PDF
    We present a single-photon counter based on a silicon Single-Photon Avalanche Diode (SPAD) fabricated in a 0.35 μm CMOS technology. The detector is monolithically integrated with a front-end circuit and a digital pulse output driver. External components are kept to a minimum and the resulting instrument is low-cost, low-power and compact, being housed into an industry-standard 1-inch aluminum optical mounting tube. It features a maximum power consumption of just 250 mW from an USB link. The embedded 50 μm diameter SPAD has high photon detection efficiency in the visible range (55 % at 420 nm), low noise (< 100 cps at room temperature), low timing jitter (< 100 ps full-width at half maximum), and very low afterpulsing probability (down to 1 % with 60 ns hold-off time). The high performance, compactness and low cost enable many unexplored applications in life sciences, personal health care, industrial quality check, quantum physics and others, where it is required to count single photons and to measure their arrival time

    Non-line-of-sight imaging using a time-gated single photon avalanche diode

    Get PDF
    By using time-of-flight information encoded in multiply scattered light, it is possible to reconstruct images of objects hidden from the camera’s direct line of sight. Here, we present a non-line-of-sight imaging system that uses a single-pixel, single-photon avalanche diode (SPAD) to collect time-of-flight information. Compared to earlier systems, this modification provides significant improvements in terms of power requirements, form factor, cost, and reconstruction time, while maintaining a comparable time resolution. The potential for further size and cost reduction of this technology make this system a good base for developing a practical system that can be used in real world applications

    InGaAs/InP single-photon detector with low noise, low timing jitter and high count rate

    Get PDF
    We present a new InGaAs/InP Single-Photon Avalanche Diode (SPAD) with high detection efficiency and low noise, which has been employed in a sinusoidal-gated setup to achieve very low afterpulsing probability and high count rate. The new InGaAs/InP SPAD has lower noise compared to previous generations thanks to the improvement of Zinc diffusion conditions and the optimization of the vertical structure. A detector with 25 μm active-area diameter, operated in gated-mode with ON time of tens of nanoseconds, has a dark count rate of few kilo-counts per second at 225 K and 5 V of excess bias, 30% photon detection efficiency at 1550 nm and a timing jitter of less than 90 ps (FWHM) at 7 V of excess bias. In order to reduce significantly the afterpulsing probability, these detectors were operated with a sinusoidal gate at 1.3 GHz. The extremely short gate ON time (less than 200 ps) reduces the charge flowing through the junction, thus reducing the number of trapped carriers and, eventually, lowering the afterpulsing probability. The resulting detection system achieves a maximum count rate higher than 650 Mcount/s with an afterpulsing probability of about 1.5%, a photon detection efficiency greater than 30% at 1550 nm and a temporal resolution of less than 90 ps (FWHM)

    Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow

    Get PDF
    Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multiexposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables

    Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Get PDF
    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor

    Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner

    Get PDF
    Can we reconstruct the entire internal shape of a room if all we can directly observe is a small portion of one internal wall, presumably through a window in the room? While conventional wisdom may indicate that this is not possible, motivated by recent work on 'looking around corners', we show that one can exploit light echoes to reconstruct the internal shape of hidden rooms. Existing techniques for looking around the corner using transient images model the hidden volume using voxels and try to explain the captured transient response as the sum of the transient responses obtained from individual voxels. Such a technique inherently suffers from challenges with regards to low signal to background ratios (SBR) and has difficulty scaling to larger volumes. In contrast, in this paper, we argue for using a plane-based model for the hidden surfaces. We demonstrate that such a plane-based model results in much higher SBR while simultaneously being amenable to larger spatial scales. We build an experimental prototype composed of a pulsed laser source and a single-photon avalanche detector (SPAD) that can achieve a time resolution of about 30ps and demonstrate high-fidelity reconstructions both of individual planes in a hidden volume and for reconstructing entire polygonal rooms composed of multiple planar walls

    Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching

    Get PDF
    The spatial resolution of a stimulated emission depletion (STED) microscope is theoretically unlimited and practically determined by the signal-to-noise ratio. Typically, an increase of the STED beam's power leads to an improvement of the effective resolution. However, this improvement may vanish because an increased STED beam's power is often accompanied by an increased photobleaching, which worsen the effective resolution by reducing the signal strength. A way to lower the photobleaching in pulsed STED (P-STED) implementations is to reduce the peak intensity lengthening the pulses duration (for a given average STED beam's power). This also leads to a reduction of the fluorophores quenching, thus a reduction of the effective resolution, but the time-gated detection was proved to be successful in recovering these reductions. Here we demonstrated that a subnanosecond fiber laser beam (pulse width ∼600 ps) reduces the photobleaching with respect to a traditional stretched hundreds picosecond (∼200 ps) beam provided by a Ti:Sapphire laser, without any effective spatial resolution lost
    corecore