23 research outputs found

    Spatio-temporal crime HotSpot detection and prediction: a systematic literature review

    Get PDF
    The primary objective of this study is to accumulate, summarize, and evaluate the state-of-the-art for spatio-temporal crime hotspot detection and prediction techniques by conducting a systematic literature review (SLR). The authors were unable to find a comprehensive study on crime hotspot detection and prediction while conducting this SLR. Therefore, to the best of author's knowledge, this study is the premier attempt to critically analyze the existing literature along with presenting potential challenges faced by current crime hotspot detection and prediction systems. The SLR is conducted by thoroughly consulting top five scientific databases (such as IEEE, Science Direct, Springer, Scopus, and ACM), and synthesized 49 different studies on crime hotspot detection and prediction after critical review. This study unfolds the following major aspects: 1) the impact of data mining and machine learning approaches, especially clustering techniques in crime hotspot detection; 2) the utility of time series analysis techniques and deep learning techniques in crime trend prediction; 3) the inclusion of spatial and temporal information in crime datasets making the crime prediction systems more accurate and reliable; 4) the potential challenges faced by the state-of-the-art techniques and the future research directions. Moreover, the SLR aims to provide a core foundation for the research on spatio-temporal crime prediction applications while highlighting several challenges related to the accuracy of crime hotspot detection and prediction applications

    Spatio-temporal crime predictions by leveraging artificial intelligence for citizens security in smart cities

    Get PDF
    Smart city infrastructure has a significant impact on improving the quality of humans life. However, a substantial increase in the urban population from the last few years poses challenges related to resource management, safety, and security. To ensure the safety and security in the smart city environment, this paper presents a novel approach by empowering the authorities to better visualize the threats, by identifying and predicting the highly-reported crime zones in the smart city. To this end, it first investigates the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to detect the hot-spots that have a higher risk of crime occurrence. Second, for crime prediction, Seasonal Auto-Regressive Integrated Moving Average (SARIMA) is exploited in each dense crime region to predict the number of crime incidents in the future with spatial and temporal information. The proposed HDBSCAN and SARIMA based crime prediction model is evaluated on ten years of crime data (2008-2017) for New York City (NYC) . The accuracy of the model is measured by considering different time scenarios such as the year-wise, (i.e., for each year), and for the total considered duration of ten years using an 80:20 ratio. The 80% of data was used for training and 20% for testing. The proposed approach outperforms with an average Mean Absolute Error (MAE) of 11.47 as compared to the highest scoring DBSCAN based method with MAE 27.03

    Leveraging transfer learning with deep learning for crime prediction

    No full text
    Crime remains a crucial concern regarding ensuring a safe and secure environment for the public. Numerous efforts have been made to predict crime, emphasizing the importance of employing deep learning approaches for precise predictions. However, sufficient crime data and resources for training state-of-the-art deep learning-based crime prediction systems pose a challenge. To address this issue, this study adopts the transfer learning paradigm. Moreover, this study fine-tunes state-of-the-art statistical and deep learning methods, including Simple Moving Averages (SMA), Weighted Moving Averages (WMA), Exponential Moving Averages (EMA), Long Short Term Memory (LSTM), Bi-directional Long Short Term Memory (BiLSTMs), and Convolutional Neural Networks and Long Short Term Memory (CNN-LSTM) for crime prediction. Primarily, this study proposed a BiLSTM based transfer learning architecture due to its high accuracy in predicting weekly and monthly crime trends. The transfer learning paradigm leverages the fine-tuned BiLSTM model to transfer crime knowledge from one neighbourhood to another. The proposed method is evaluated on Chicago, New York, and Lahore crime datasets. Experimental results demonstrate the superiority of transfer learning with BiLSTM, achieving low error values and reduced execution time. These prediction results can significantly enhance the efficiency of law enforcement agencies in controlling and preventing crime

    Hybrid of deep learning and exponential smoothing for enhancing crime forecasting accuracy

    No full text
    The continued urbanization poses several challenges for law enforcement agencies to ensure a safe and secure environment. Countries are spending a substantial amount of their budgets to control and prevent crime. However, limited efforts have been made in the crime prediction area due to the deficiency of spatiotemporal crime data. Several machine learning, deep learning, and time series analysis techniques are exploited, but accuracy issues prevail. Thus, this study proposed a Bidirectional Long Short Term Memory (BiLSTM) and Exponential Smoothing (ES) hybrid for crime forecasting. The proposed technique is evaluated using New York City crime data from 2010-2017. The proposed approach outperformed as compared to state-of-the-art Seasonal Autoregressive Integrated Moving Averages (SARIMA) with low Mean Absolute Percentage Error (MAPE) (0.3738, 0.3891, 0.3433, 0.3964), Root Mean Square Error (RMSE)(13.146, 13.669, 13.104, 13.77), and Mean Absolute Error (MAE) (9.837, 10.896, 10.598, 10.721). Therefore, the proposed technique can help law enforcement agencies to prevent and control crime by forecasting crime patterns

    Deep Learning-Based Growth Prediction System: A Use Case of China Agriculture

    No full text
    Agricultural advancements have significantly impacted people’s lives and their surroundings in recent years. The insufficient knowledge of the whole agricultural production system and conventional ways of irrigation have limited agricultural yields in the past. The remote sensing innovations recently implemented in agriculture have dramatically revolutionized production efficiency by offering unparalleled opportunities for convenient, versatile, and quick collection of land images to collect critical details on the crop’s conditions. These innovations have enabled automated data collection, simulation, and interpretation based on crop analytics facilitated by deep learning techniques. This paper aims to reveal the transformative patterns of old Chinese agrarian development and fruit production by focusing on the major crop production (from 1980 to 2050) taking into account various forms of data from fruit production (e.g., apples, bananas, citrus fruits, pears, and grapes). In this study, we used production data for different fruits grown in China to predict the future production of these fruits. The study employs deep neural networks to project future fruit production based on the statistics issued by China’s National Bureau of Statistics on the total fruit growth output for this period. The proposed method exhibits encouraging results with an accuracy of 95.56% calculating by accuracy formula based on fruit production variation. Authors further provide recommendations on the AGR-DL (agricultural deep learning) method being helpful for developing countries. The results suggest that the agricultural development in China is acceptable but demands more improvement and government needs to prioritize expanding the fruit production by establishing new strategies for cultivators to boost their performance

    Comparison of Borough-wise prediction error values for a month using statistical and deep learning methods.

    No full text
    Comparison of Borough-wise prediction error values for a month using statistical and deep learning methods.</p

    Architecture details of transfer learning using BiLSTM for crime prediction.

    No full text
    Architecture details of transfer learning using BiLSTM for crime prediction.</p
    corecore