30 research outputs found
Quarkonia production at RHIC
Quarkonia (J/Psi, Psi', Upsilon) production provides a sensitive probe of
gluon distributions and their modification in nuclei; and is a leading probe of
the hot-dense (deconfined) matter created in high-energy collisions of heavy
ions. I will discuss our current understanding of the modification of gluon
distributions in nuclei and other cold-nuclear-matter effects in the context of
recent p-p and p(d)-A quarkonia measurements. Then I will review the latest
results for nucleus-nucleus collisions from RHIC, and together with the
baseline results from d-A and p-p collisions, discuss several alternative
explanations for the observed suppressions and future prospects for
distinguishing these different pictures.Comment: 8 pages including figures, writeup of talk given at Strange Quark
Matter 2006, UCLA 26-31 March, 200
Recent results in relativistic heavy ion collisions: from ``a new state of matter'' to "the perfect fluid"
Experimental Physics with Relativistic Heavy Ions dates from 1992 when a beam
of 197Au of energy greater than 10A GeV/c first became available at the
Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL)
soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton
Synchrotron (SPS) at CERN (European Center for Nuclear Research). Previous
pioneering measurements at the Berkeley Bevalac in the late 1970's and early
1980's were at much lower bombarding energies (~ 1 A GeV/c) where nuclear
breakup rather than particle production is the dominant inelastic process in
A+A collisions. More recently, starting in 2000, the Relativistic Heavy Ion
Collider (RHIC) at BNL has produced head-on collisions of two 100A GeV beams of
fully stripped Au ions, corresponding to nucleon-nucleon center-of-mass energy,
sqrt(sNN)=200 GeV, total c.m. energy 200A GeV. The objective of this research
program is to produce nuclear matter with extreme density and temperature,
possibly resulting in a state of matter where the quarks and gluons normally
confined inside individual nucleons (r < 1 fm) are free to act over distances
an order of magnitude larger. Progress from the period 1992 to the present will
be reviewed, with reference to previous results from light ion and
proton-proton collisions where appropriate. Emphasis will be placed on the
measurements which formed the basis for the announcements by the two major
laboratories: "A new state of matter", by CERN on Feb 10, 2000 and "The perfect
fluid", by BNL on April 19, 2005.Comment: 62 pages, 39 figures. Review article published in Reports on Progress
in Physics on June 23, 2006. In this published version, mistakes,
typographical errors, and citations have been corrected and a subsection has
been adde
Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV
We present transverse momentum (p_T) spectra of charged hadrons measured in
deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four
centrality classes. Nucleon-gold collisions were selected by tagging events in
which a spectator nucleon was observed in one of two forward rapidity
detectors. The spectra and yields were investigated as a function of the number
of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A
comparison of charged particle yields to those in p+p collisions show that the
yield per nucleon-nucleon collision saturates with \nu for high momentum
particles. We also present the charged hadron to neutral pion ratios as a
function of p_T.Comment: 330 authors, 15 pages text, 16 figures, 3 tables. Submitted to Phys.
Rev. Lett. v2 has minor changes to reflect revisions during review process.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
High-pT pi^zero Production with Respect to the Reaction Plane in Au + Au Collisions at sqrt(s_NN) = 200 GeV
Measurements of the azimuthal anisotropy of high-\pT neutral pion neutral
pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV by the PHENIX
experiment are presented. The data included in this paper were collected during
the 2004 RHIC running period and represent approximately an order of magnitude
increase in the number of analyzed events relative to previously published
results. Azimuthal angle distributions of pi^0s detected in the PHENIX
electromagnetic calorimeters are measured relative to the reaction plane
determined event-by-event using the forward and backward beam-beam counters.
Amplitudes of the second Fourier component (v_2) of the angular distributions
are presented as a function of pi^0 transverse momentum p_T for different bins
in collision centrality. Measured reaction plane dependent pi^0 yields are used
to determine the azimuthal dependence of the pi^0 suppression as a function of
p_T, R_AA (Delta phi,p_T). A jet-quenching motivated geometric analysis is
presented that attempts to simultaneously describe the centrality dependence
and reaction plane angle dependence of the pi^0 suppression in terms of the
path lengths of hypothetical parent partons in the medium. This set of results
allows for a detailed examination of the influence of geometry in the collision
region, and of the interplay between collective flow and jet-quenching effects
along the azimuthal axis.Comment: 344 authors, 35 pages text, RevTeX-4, 24 figures, 8 tables. Submitted
to Physical Review
meson production in Au collisions at GeV
The PHENIX experiment has measured meson production in Au
collisions at GeV using the dimuon and dielectron decay
channels. The meson is measured in the forward (backward) -going
(Au-going) direction, () in the transverse-momentum
() range from 1--7 GeV/, and at midrapidity in the
range below 7 GeV/. The meson invariant yields and
nuclear-modification factors as a function of , rapidity, and centrality
are reported. An enhancement of meson production is observed in the
Au-going direction, while suppression is seen in the -going direction, and
no modification is observed at midrapidity relative to the yield in
collisions scaled by the number of binary collisions. Similar behavior was
previously observed for inclusive charged hadrons and open heavy flavor
indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version
accepted for publication in Phys. Rev. C. Data tables for the points plotted
in the figures are given in the paper itsel
Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV
We present a new analysis of J/psi production yields in deuteron-gold
collisions at sqrt(s_NN) = 200 GeV using data taken by the PHENIX experiment in
2003 and previously published in [S.S. Adler et al., Phys. Rev. Lett 96, 012304
(2006)]. The high statistics proton-proton J/psi data taken in 2005 is used to
improve the baseline measurement and thus construct updated cold nuclear matter
modification factors R_dAu. A suppression of J/psi in cold nuclear matter is
observed as one goes forward in rapidity (in the deuteron-going direction),
corresponding to a region more sensitive to initial state low-x gluons in the
gold nucleus. The measured nuclear modification factors are compared to
theoretical calculations of nuclear shadowing to which a J/psi (or precursor)
break-up cross-section is added. Breakup cross sections of sigma_breakup =
2.8^[+1.7_-1.4] (2.2^[+1.6_-1.5]) mb are obtained by fitting these calculations
to the data using two different models of nuclear shadowing. These breakup
cross section values are consistent within large uncertainties with the 4.2 +/-
0.5 mb determined at lower collision energies. Projecting this range of cold
nuclear matter effects to copper-copper and gold-gold collisions reveals that
the current constraints are not sufficient to firmly quantify the additional
hot nuclear matter effect.Comment: 453 authors from 59 institutions, 15 pages, 13 figures, 5 tables.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV
We present inclusive charged hadron elliptic flow v_2 measured over the
pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV.
Results for v_2 are presented over a broad range of transverse momentum (p_T =
0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that
are not correlated with the reaction plane, as well as the fluctuations of v_2,
we compare two different analysis methods: (1) event plane method from two
independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5)
pseudorapidities and (2) two-particle cumulant method extracted using
correlations between particles detected at midrapidity. The two event-plane
results are consistent within systematic uncertainties over the measured p_T
and in centrality 0-40%. There is at most 20% difference of the v_2 between the
two event plane methods in peripheral (40-60%) collisions. The comparisons
between the two-particle cumulant results and the standard event plane
measurements are discussed.Comment: 347 authors, 27 pages text, RevTeX-4, 24 figures, 10 tables.
Submitted to Physical Review
Measurement of Single Electron Event Anisotropy in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The transverse momentum dependence of the azimuthal anisotropy parameter v_2,
the second harmonic of the azimuthal distribution, for electrons at
mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au
collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to
the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the
result we have measured the v_2 of electrons from heavy flavor decay after
subtraction of the v_2 of electrons from other sources such as photon
conversions and Dalitz decay from light neutral mesons. We observe a non-zero
single electron v_2 with a 90% confidence level in the intermediate p_T region.Comment: 330 authors, 11 pages text, RevTeX4, 9 figures, 1 tables. Submitted
to Physical Review C. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Systematic Studies of the Centrality and sqrt(s_NN) Dependence of dE_T/deta and dN_ch/deta in Heavy Ion Collisions at Mid-rapidity
The PHENIX experiment at RHIC has measured transverse energy and charged
particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6,
130 and 200 GeV as a function of centrality. The presented results are compared
to measurements from other RHIC experiments, and experiments at lower energies.
The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants
is consistent with logarithmic scaling for the most central events. The
centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured
incident energies. At RHIC energies the ratio of transverse energy per charged
particle was found independent of centrality and growing slowly with
sqrt(s_NN). A survey of comparisons between the data and available theoretical
models is also presented.Comment: 327 authors, 25 pages text, 19 figures, 17 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm