6 research outputs found

    J-like aggregation of a cationic polythiophene with hydrogen-bonding capabilities due to 1,4-dioxane: Solution excitation spectra and fluorescence, morphology and surface free energy of films

    Get PDF
    This work presents solution- and solid-state evidence of the enhancement of J-like aggregation of a cationic polythiophene (CPT) with isothiouronium functionalities (PT1), caused by a decrease in the polarity and hydrogen-bonding (H-bonding) capacity of the solvent, generated by using a 50:50 v/v 1,4-dioxane-water mixture (W-DI) instead of water. In solution, the presence of 1,4-dioxane (DI) seems to generate selective solvation, tuning the energy transfer within PT1 from inter-chain into intra-chain, enhancing J-like aggregation. On the other hand, during the casting process, the presence of DI directs the interaction with solid-substrates, generating an increase in the solid-state fluorescence, modifying the morphology from one similar to ballistic-aggregation (BA) into one similar to attachment limited aggregation (ALA), DI also modifies the SFE by increasing slightly its polar contribution (γSp) and decreasing the dispersive one (γSd). These results can be explained to be caused by a "coating" effect in presence of DI (as proposed before experimentally and computationally). Our results show a clear correlation between the solution- and solid-state properties of PT1 in each solvent, further validating the use of the fluorescence excitation spectra to trace J-like aggregation of water-soluble conjugated polymeric fluorophores in solution. This information could be useful for predicting and designing specific mesoscopic architectures of CPTs (and conjugated polyelectrolytes in general), which are molecules lacking of clear structure-function guidelines for designing high-performance polythiophene-based interlayer materials, especially for CPTs (and conjugated polyelectrolytes (CPEs) in general), particularly those with H-bonding capabilities. To the best of our knowledge the use of solution-state fluorescence excitation spectra to identify J-like aggregation of water-soluble conjugated polymers (CPs) has been scarcely used/discussed in literature and no correlation with solid-state properties was reported previously

    Cytoplasmic keratins couple with and maintain nuclear envelope integrity in colonic epithelial cells

    Get PDF
    Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8−/−) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8−/− colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.</p

    Nuclear-Localized Fluorescent Proteins Enable Visualization of Nuclear Behavior in the Basidiomycete <i>Schizophyllum commune</i> Early Mating Interactions

    No full text
    Spinning disc confocal microscopical research was conducted on living mating hyphae of the tetrapolar basidiomycete Schizophyllum commune. Haploid strains with either the same or different A and B mating-type genes and expressing differently labelled histone 2B were confronted. In the haploid hyphae histone 2B mCherry and histone 2B EGFP were visualized as red and green nuclei, respectively. In hyphae with the same A but different B genes, the red and green nuclei were observed next to each other. This indicated that nuclear migration between strains, regulated by the B mating type, had taken place. The compatible mating with different A and B genes produced a high number of mixed EFGP/mCherry, yellow nuclei. The mixed nuclei resulted from nearby divisions of nuclei encoding different histones and mating-type genes. During this process, the histones with the different labels were incorporated in the same nuclei, along with the heterodimerized transcription factors encoded by the different A mating-type genes and present around the nuclei. This led to the activation of the A-regulated pathway and indicated that different A genes are important to the cell cycle activation of a compatible mating. Consequently, a yellow nuclear pair stuck together, divided synchronously and proceeded in the migration hyphae towards the colony periphery, where the dikaryotization was promoted by branch formation from the migration hyphae

    Microtubules self-repair in living cells

    No full text
    International audienceMicrotubule self-repair has been studied both in vitro and in vivo as an underlying mechanism of microtubule stability. The turnover of tubulin dimers along the microtubule has challenged the pre-existing dogma that only growing ends are dynamic. However, although there is clear evidence of tubulin incorporation into the shaft of polymerized microtubules in vitro, the possibility of such events occurring in living cells remains uncertain. In this study, we investigated this possibility by microinjecting purified tubulin dimers labeled with a red fluorophore into the cytoplasm of cells expressing GFP-tubulin. We observed the appearance of red dots along the pre-existing green microtubule within minutes. We found that the fluorescence intensities of these red dots were inversely correlated with the green signal, suggesting that the red dimers were incorporated into the microtubules and replaced the pre-existing green dimers. Lateral distance from the microtubule center was similar to that in incorporation sites and in growing ends. The saturation of the size and spatial frequency of incorporations as a function of injected tubulin concentration and post-injection delay suggested that the injected dimers incorporated into a finite number of damaged sites. By our low estimate, within a few minutes of the injections, free dimers incorporated into major repair sites every 70 μm of microtubules. Finally, we mapped the location of these sites in micropatterned cells and found that they were more concentrated in regions where the actin filament network was less dense and where microtubules exhibited greater lateral fluctuations

    Cytoplasmic keratins couple with and maintain nuclear envelope integrity in colonic epithelial cells

    No full text
    Cytoplasmic keratins couple with SUN2 and lamin A at the nuclear envelope and maintain plectin, LINC complex, lamin and lamin-associated protein levels in colonic epithelial cells. Loss of keratin 8 has no major impact on nuclear shape and size, but compromises nuclear envelope integrity basally and during shear stress
    corecore